[
https://issues.apache.org/jira/browse/BEAM-12560?focusedWorklogId=693380&page=com.atlassian.jira.plugin.system.issuetabpanels:worklog-tabpanel#worklog-693380
]
ASF GitHub Bot logged work on BEAM-12560:
-----------------------------------------
Author: ASF GitHub Bot
Created on: 09/Dec/21 16:34
Start Date: 09/Dec/21 16:34
Worklog Time Spent: 10m
Work Description: TheNeuralBit commented on a change in pull request
#15827:
URL: https://github.com/apache/beam/pull/15827#discussion_r765960282
##########
File path: sdks/python/apache_beam/dataframe/frames.py
##########
@@ -3547,6 +3616,110 @@ def value_counts(self, subset=None, sort=False,
normalize=False,
return result
+ @frame_base.with_docs_from(pd.DataFrame)
+ @frame_base.args_to_kwargs(pd.DataFrame)
+ @frame_base.populate_defaults(pd.DataFrame)
+ def idxmin(self, **kwargs):
+ axis = kwargs.get('axis', 0)
+
+ index_dtype = self._expr.proxy().index.dtype
+ columns_dtype = self._expr.proxy().columns.dtype
+
+ def compute_idxmin(df):
+ min_indexes = df.idxmin(**kwargs).unique()
+ if pd.isna(min_indexes).any():
+ return df
+ else:
+ return df.loc[min_indexes]
+
+ if axis in ('index', 0):
+ requires_partition = partitionings.Singleton()
+
+ proxy_index = pd.Index([], dtype=columns_dtype)
+ proxy = pd.Series([], index=proxy_index, dtype=index_dtype)
+ partition_proxy = self._expr.proxy().copy()
+
+ idxmin_per_partition = expressions.ComputedExpression(
+ 'idxmin-per-partition',
+ compute_idxmin, [self._expr],
+ proxy=partition_proxy,
+ requires_partition_by=partitionings.Arbitrary(),
+ preserves_partition_by=partitionings.Arbitrary()
+ )
+
+ elif axis in ('columns', 1):
+ requires_partition=partitionings.Index()
+
+ proxy_index = pd.Index([], dtype=index_dtype)
+ proxy = pd.Series([], index=proxy_index, dtype=columns_dtype)
+
+ idxmin_per_partition = self._expr
+
+
+ with expressions.allow_non_parallel_operations(True):
+ return frame_base.DeferredFrame.wrap(
+ expressions.ComputedExpression(
+ 'idxmin',
+ lambda df: df.idxmin(**kwargs), [idxmin_per_partition],
+ proxy=proxy,
+ requires_partition_by=requires_partition,
+ preserves_partition_by=partitionings.Singleton()
+ )
+ )
+
+
+ @frame_base.with_docs_from(pd.DataFrame)
+ @frame_base.args_to_kwargs(pd.DataFrame)
+ @frame_base.populate_defaults(pd.DataFrame)
+ def idxmax(self, **kwargs):
Review comment:
You might consider adding a helper (here and in Series) like `def
_idxmaxmin_helper(self, op, kwargs):` (where op is 'idxmin' or 'idxmax'). That
could let you implement the common logic in one place. I'll leave that up to
you though.
##########
File path: sdks/python/apache_beam/dataframe/frames.py
##########
@@ -3547,6 +3616,110 @@ def value_counts(self, subset=None, sort=False,
normalize=False,
return result
+ @frame_base.with_docs_from(pd.DataFrame)
+ @frame_base.args_to_kwargs(pd.DataFrame)
+ @frame_base.populate_defaults(pd.DataFrame)
+ def idxmin(self, **kwargs):
+ axis = kwargs.get('axis', 0)
+
+ index_dtype = self._expr.proxy().index.dtype
+ columns_dtype = self._expr.proxy().columns.dtype
+
+ def compute_idxmin(df):
+ min_indexes = df.idxmin(**kwargs).unique()
+ if pd.isna(min_indexes).any():
+ return df
+ else:
+ return df.loc[min_indexes]
+
+ if axis in ('index', 0):
+ requires_partition = partitionings.Singleton()
+
+ proxy_index = pd.Index([], dtype=columns_dtype)
+ proxy = pd.Series([], index=proxy_index, dtype=index_dtype)
+ partition_proxy = self._expr.proxy().copy()
+
+ idxmin_per_partition = expressions.ComputedExpression(
+ 'idxmin-per-partition',
+ compute_idxmin, [self._expr],
+ proxy=partition_proxy,
+ requires_partition_by=partitionings.Arbitrary(),
+ preserves_partition_by=partitionings.Arbitrary()
+ )
+
+ elif axis in ('columns', 1):
Review comment:
nit: please add an else to raise a ValueError for an invalid axis
##########
File path: sdks/python/apache_beam/dataframe/frames.py
##########
@@ -1277,6 +1277,74 @@ def align(self, other, join, axis, level, method,
**kwargs):
requires_partition_by=partitionings.Arbitrary(),
preserves_partition_by=partitionings.Singleton())
+ @frame_base.with_docs_from(pd.Series)
+ @frame_base.args_to_kwargs(pd.Series)
+ @frame_base.populate_defaults(pd.Series)
+ def idxmin(self, **kwargs):
+ def compute_idxmin(s):
+ min_index = s.idxmin(**kwargs)
+ if pd.isna(min_index):
+ return s
+ else:
+ return s.loc[[min_index]]
+
+ # Avoids empty Series error when evaluating proxy
+ index_dtype = self._expr.proxy().index.dtype
+ index = pd.Index([], dtype=index_dtype)
+ proxy = self._expr.proxy().copy()
+ proxy.index = index
+ proxy = proxy.append(
+ pd.Series([np.inf], index=np.asarray(['0']).astype(proxy.index.dtype)))
+
+ idx_min = expressions.ComputedExpression(
+ 'idx_min',
+ compute_idxmin, [self._expr],
+ proxy=proxy,
+ requires_partition_by=partitionings.Index(),
+ preserves_partition_by=partitionings.Arbitrary())
+
+ with expressions.allow_non_parallel_operations(True):
+ return frame_base.DeferredFrame.wrap(
+ expressions.ComputedExpression(
+ 'idxmin_combine',
+ lambda s: s.idxmin(**kwargs), [idx_min],
+ requires_partition_by=partitionings.Singleton(),
+ preserves_partition_by=partitionings.Singleton()))
+
+ @frame_base.with_docs_from(pd.Series)
+ @frame_base.args_to_kwargs(pd.Series)
+ @frame_base.populate_defaults(pd.Series)
+ def idxmax(self, **kwargs):
+ def compute_idxmax(s):
+ max_index = s.idxmax(**kwargs)
+ if pd.isna(max_index):
+ return s
+ else:
+ return s.loc[[max_index]]
+
+ # Avoids empty Series error when evaluating proxy
+ index_dtype = self._expr.proxy().index.dtype
+ index = pd.Index([], dtype=index_dtype)
+ proxy = self._expr.proxy().copy()
+ proxy.index = index
+ proxy = proxy.append(
+ pd.Series([-np.inf],
index=np.asarray(['0']).astype(proxy.index.dtype)))
+
+ idx_max = expressions.ComputedExpression(
+ 'idx_max',
+ compute_idxmax, [self._expr],
+ proxy=proxy,
+ requires_partition_by=partitionings.Index(),
Review comment:
Hm we should dig into why you're getting an error without this. I'll
take a look
--
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
To unsubscribe, e-mail: [email protected]
For queries about this service, please contact Infrastructure at:
[email protected]
Issue Time Tracking
-------------------
Worklog Id: (was: 693380)
Time Spent: 7h 50m (was: 7h 40m)
> Implement idxmin and idxmax for DataFrame, Series, and GroupBy
> --------------------------------------------------------------
>
> Key: BEAM-12560
> URL: https://issues.apache.org/jira/browse/BEAM-12560
> Project: Beam
> Issue Type: Improvement
> Components: dsl-dataframe
> Reporter: Brian Hulette
> Assignee: Mike Hernandez
> Priority: P3
> Time Spent: 7h 50m
> Remaining Estimate: 0h
>
> Add an implementation of
> [idxmin|https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.idxmin.html]
> and
> [idxmax|https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.idxmax.html]
> for DeferredDataFrame, DeferredSeries, and DeferredGroupBy. It should be
> fully unit tested with some combination of pandas_doctests_test.py and
> frames_test.py.
> https://github.com/apache/beam/pull/14274 is an example of a typical PR that
> adds new operations. See
> https://lists.apache.org/thread.html/r8ffe96d756054610dfdb4e849ffc6a741e826d15ba7e5bdeee1b4266%40%3Cdev.beam.apache.org%3E
> for background on the DataFrame API.
--
This message was sent by Atlassian Jira
(v8.20.1#820001)