[ 
https://issues.apache.org/jira/browse/BEAM-12562?focusedWorklogId=703657&page=com.atlassian.jira.plugin.system.issuetabpanels:worklog-tabpanel#worklog-703657
 ]

ASF GitHub Bot logged work on BEAM-12562:
-----------------------------------------

                Author: ASF GitHub Bot
            Created on: 05/Jan/22 00:41
            Start Date: 05/Jan/22 00:41
    Worklog Time Spent: 10m 
      Work Description: TheNeuralBit commented on a change in pull request 
#16256:
URL: https://github.com/apache/beam/pull/16256#discussion_r778476199



##########
File path: sdks/python/apache_beam/dataframe/frames.py
##########
@@ -4073,6 +4077,10 @@ def fn_wrapper(x, *args, **kwargs):
             requires_partition_by=partitionings.Index(levels),
             
preserves_partition_by=partitionings.Index(self._grouping_indexes)))
 
+  @frame_base.with_docs_from(DataFrameGroupBy)
+  def pipe(self, func, *args, **kwargs):
+    return func(self, *args, **kwargs)

Review comment:
       Note func can also be a tuple of `(callable, str)`, where str is the 
name of a kwarg to pass `self` to (see the 
[docs](https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.pipe.html)).
 Could you implement and test that logic as well?

##########
File path: sdks/python/apache_beam/dataframe/frames_test.py
##########
@@ -1245,6 +1245,37 @@ def test_idxmax(self):
     self._run_test(lambda s2: s2.idxmax(), s2)
     self._run_test(lambda s2: s2.idxmax(skipna=False), s2)
 
+  def test_pipe(self):
+    def df_times(df, column, times):
+      df[column] = df[column] * times
+      return df
+
+    def s_times(s, times):
+      return s * times
+
+    df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]}, index=[0, 1, 2])
+    s = pd.Series([1, 2, 3, 4, 5], index=[0, 1, 2, 3, 4])
+    # s2 = pd.Series([6, 7], index=[5, 6])
+
+    func_1 = df_times
+    func_2 = frames.DeferredDataFrame.sum
+    func_3 = frames.DeferredSeries.sum

Review comment:
       I'm very surprised that these work. `_run_test` works by first executing 
the lambda with normal pandas to compute the expected the result. I'd think 
that would fail in the pandas case, since it's trying to call the Beam function.
   
   I think it's just a fluke that they work, since `sum` is implemented with 
`_agg_method`: 
https://github.com/apache/beam/blob/5ccb00298dcc591e0af7061a5ab0fbdb1196ca8c/sdks/python/apache_beam/dataframe/frames.py#L1957
   
   Which defers to `self.agg`:
   
https://github.com/apache/beam/blob/5ccb00298dcc591e0af7061a5ab0fbdb1196ca8c/sdks/python/apache_beam/dataframe/frames.py#L131
   
   The other tests you have here (`func_1`, `func_4`) are sufficient in my 
opinion, could you just remove the `frames.Deferred*` ones, since they're a 
little circular?

##########
File path: sdks/python/apache_beam/dataframe/frames_test.py
##########
@@ -1245,6 +1245,37 @@ def test_idxmax(self):
     self._run_test(lambda s2: s2.idxmax(), s2)
     self._run_test(lambda s2: s2.idxmax(skipna=False), s2)
 
+  def test_pipe(self):
+    def df_times(df, column, times):
+      df[column] = df[column] * times
+      return df
+
+    def s_times(s, times):
+      return s * times
+
+    df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]}, index=[0, 1, 2])
+    s = pd.Series([1, 2, 3, 4, 5], index=[0, 1, 2, 3, 4])
+    # s2 = pd.Series([6, 7], index=[5, 6])
+
+    func_1 = df_times
+    func_2 = frames.DeferredDataFrame.sum
+    func_3 = frames.DeferredSeries.sum
+    func_4 = s_times
+    # func_5 = frames.DeferredSeries.append
+
+    self._run_inplace_test(lambda df: df.pipe(func_1, 'A', 2), df)
+    self._run_test(lambda df: df.pipe(func_2), df)
+    # type assert fails when axis=1
+    # self._run_test(lambda df: df.pipe(func_2, axis=1), df)
+    self._run_inplace_test(lambda df: df.pipe(func_1, 'A', 2).pipe(func_2), df)
+    self._run_test(lambda df: df.pipe(func_2).pipe(func_3), df)
+
+    self._run_test(lambda s: s.pipe(func_4, 2), s)
+    self._run_test(lambda s: s.pipe(func_3), s)
+    self._run_test(lambda s: s.pipe(func_4, 2).pipe(func_3), s)
+    # Can't append non-deferred series
+    # self._run_test(lambda s: s.pipe(func_5, s2).pipe(func_4, 2), s)

Review comment:
       You can pass multiple frames to `_run_test` and they will all be 
converted to Deferred counterparts and passed to the lambda (for the 
distributed run). I think this should work:
   
   ```suggestion
       self._run_test(lambda s, s2: s.pipe(func_5, s2).pipe(func_4, 2), s, s2)
   ```




-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]


Issue Time Tracking
-------------------

    Worklog Id:     (was: 703657)
    Time Spent: 4h 10m  (was: 4h)

> Implement pipe for DataFrame, Series, and GroupBy
> -------------------------------------------------
>
>                 Key: BEAM-12562
>                 URL: https://issues.apache.org/jira/browse/BEAM-12562
>             Project: Beam
>          Issue Type: Improvement
>          Components: dsl-dataframe
>            Reporter: Brian Hulette
>            Assignee: Mike Hernandez
>            Priority: P3
>          Time Spent: 4h 10m
>  Remaining Estimate: 0h
>
> Add an implementation of 
> [pipe|https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.pipe.html]
>  for DeferredDataFrame, DeferredSeries, and DeferredGroupBy. It should be 
> fully unit tested with some combination of pandas_doctests_test.py and 
> frames_test.py.
> https://github.com/apache/beam/pull/14274 is an example of a typical PR that 
> adds new operations. See 
> https://lists.apache.org/thread.html/r8ffe96d756054610dfdb4e849ffc6a741e826d15ba7e5bdeee1b4266%40%3Cdev.beam.apache.org%3E
>  for background on the DataFrame API.



--
This message was sent by Atlassian Jira
(v8.20.1#820001)

Reply via email to