[
https://issues.apache.org/jira/browse/BEAM-12256?focusedWorklogId=721455&page=com.atlassian.jira.plugin.system.issuetabpanels:worklog-tabpanel#worklog-721455
]
ASF GitHub Bot logged work on BEAM-12256:
-----------------------------------------
Author: ASF GitHub Bot
Created on: 05/Feb/22 12:41
Start Date: 05/Feb/22 12:41
Worklog Time Spent: 10m
Work Description: github-actions[bot] commented on pull request #14686:
URL: https://github.com/apache/beam/pull/14686#issuecomment-1030616468
This pull request has been marked as stale due to 60 days of inactivity. It
will be closed in 1 week if no further activity occurs. If you think that’s
incorrect or this pull request requires a review, please simply write any
comment. If closed, you can revive the PR at any time and @mention a reviewer
or discuss it on the [email protected] list. Thank you for your
contributions.
--
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
To unsubscribe, e-mail: [email protected]
For queries about this service, please contact Infrastructure at:
[email protected]
Issue Time Tracking
-------------------
Worklog Id: (was: 721455)
Time Spent: 50m (was: 40m)
> PubsubIO.readAvroGenericRecord creates SchemaCoder that fails to decode some
> Avro logical types
> -----------------------------------------------------------------------------------------------
>
> Key: BEAM-12256
> URL: https://issues.apache.org/jira/browse/BEAM-12256
> Project: Beam
> Issue Type: Bug
> Components: io-java-gcp, sdk-java-core
> Affects Versions: 2.29.0
> Reporter: Brian Hulette
> Priority: P1
> Time Spent: 50m
> Remaining Estimate: 0h
>
> For example, when PubsubIO.readAvroGenericRecord is used with an avro schema
> that includes a decimal type with a non-zero scale, it can encounter the
> following exception when decoding:
> {code:java}
> org.apache.avro.AvroTypeException: Cannot encode decimal with scale 17 as
> scale 0
> at
> org.apache.avro.Conversions$DecimalConversion.toBytes(Conversions.java:92)
> at
> org.apache.beam.sdk.schemas.utils.AvroUtils.genericFromBeamField(AvroUtils.java:975)
> at
> org.apache.beam.sdk.schemas.utils.AvroUtils.toGenericRecord(AvroUtils.java:397)
> at
> org.apache.beam.sdk.schemas.utils.AvroUtils$RowToGenericRecordFn.apply(AvroUtils.java:547)
> at
> org.apache.beam.sdk.schemas.utils.AvroUtils$RowToGenericRecordFn.apply(AvroUtils.java:538)
> at org.apache.beam.sdk.schemas.SchemaCoder.decode(SchemaCoder.java:123)
> at
> org.apache.beam.sdk.io.gcp.bigquery.TableRowInfoCoder.decode(TableRowInfoCoder.java:64)
> at
> org.apache.beam.sdk.io.gcp.bigquery.TableRowInfoCoder.decode(TableRowInfoCoder.java:30)
> at
> org.apache.beam.runners.dataflow.worker.WindmillKeyedWorkItem.lambda$elementsIterable$2(WindmillKeyedWorkItem.java:112)
> at
> org.apache.beam.vendor.guava.v26_0_jre.com.google.common.collect.Iterators$6.transform(Iterators.java:785)
> at
> org.apache.beam.vendor.guava.v26_0_jre.com.google.common.collect.TransformedIterator.next(TransformedIterator.java:47)
> at
> org.apache.beam.runners.dataflow.worker.StreamingGroupAlsoByWindowReshuffleFn.processElement(StreamingGroupAlsoByWindowReshuffleFn.java:56)
> at
> org.apache.beam.runners.dataflow.worker.StreamingGroupAlsoByWindowReshuffleFn.processElement(StreamingGroupAlsoByWindowReshuffleFn.java:39)
> at
> org.apache.beam.runners.dataflow.worker.GroupAlsoByWindowFnRunner.invokeProcessElement(GroupAlsoByWindowFnRunner.java:121)
> at
> org.apache.beam.runners.dataflow.worker.GroupAlsoByWindowFnRunner.processElement(GroupAlsoByWindowFnRunner.java:73)
> at
> org.apache.beam.runners.dataflow.worker.GroupAlsoByWindowsParDoFn.processElement(GroupAlsoByWindowsParDoFn.java:137)
> at
> org.apache.beam.runners.dataflow.worker.util.common.worker.ParDoOperation.process(ParDoOperation.java:44)
> at
> org.apache.beam.runners.dataflow.worker.util.common.worker.OutputReceiver.process(OutputReceiver.java:49)
> at
> org.apache.beam.runners.dataflow.worker.util.common.worker.ReadOperation.runReadLoop(ReadOperation.java:212)
> at
> org.apache.beam.runners.dataflow.worker.util.common.worker.ReadOperation.start(ReadOperation.java:163)
> at
> org.apache.beam.runners.dataflow.worker.util.common.worker.MapTaskExecutor.execute(MapTaskExecutor.java:92)
> at
> org.apache.beam.runners.dataflow.worker.StreamingDataflowWorker.process(StreamingDataflowWorker.java:1426)
> at
> org.apache.beam.runners.dataflow.worker.StreamingDataflowWorker.access$1100(StreamingDataflowWorker.java:163)
> at
> org.apache.beam.runners.dataflow.worker.StreamingDataflowWorker$7.run(StreamingDataflowWorker.java:1105)
> at
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
> at
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
> at java.lang.Thread.run(Thread.java:748) {code}
--
This message was sent by Atlassian Jira
(v8.20.1#820001)