[ 
https://issues.apache.org/jira/browse/BEAM-13905?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Benoit Clennett-Sirois updated BEAM-13905:
------------------------------------------
    Description: 
We have discovered a potential bug whereas when you execute a pipeline that 
contains
a DataframeTransform with the "runtime_type_check" option set to True, a cryptic
error is raised by Apache Beam typecheckng.

Simple example to reproduce the bug:
    
{code:java}
from apache_beam.options.pipeline_options import PipelineOptions
from apache_beam import Pipeline, Create, Row
from apache_beam.dataframe.transforms import DataframeTransform
pipeline = Pipeline(options=PipelineOptions(runtime_type_check=True))
pipeline | Create([Row(val1=1)]) | DataframeTransform(lambda df: df)
pipeline.run(){code}
This raises a apache_beam.typehints.decorators.TypeCheckError:
{code:java}
File ".....lib/python3.8/site-packages/apache_beam/typehints/typehints.py", 
line 416, in check_constraint
    raise SimpleTypeHintError
apache_beam.typehints.decorators.TypeCheckError: According to type-hint 
expected output should be of type <class 
'apache_beam.typehints.schemas.BeamSchema_118086df_671f_4643_a929_ba65de48e7e8'>.
 Instead, received 'BeamSchema_118086df_671f_4643_a929_ba65de48e7e8(val1=1)', 
an instance of type <class 
'apache_beam.typehints.schemas.BeamSchema_118086df_671f_4643_a929_ba65de48e7e8'>.
 [while running 'DataframeTransform/Unbatch 
'placeholder_DataFrame_140623617251840'/ParDo(_UnbatchNoIndex)'] {code}
 

  was:
    We have discovered a potential bug whereas when you execute a pipeline that 
contains
    a DataframeTransform with the "runtime_type_check" option set to True, a 
cryptic
    error is raised by Apache Beam typecheckng.

    Simple example to reproduce the bug:
    
{code:java}
    from apache_beam.options.pipeline_options import PipelineOptions
    from apache_beam import Pipeline, Create, Row
    from apache_beam.dataframe.transforms import DataframeTransform
    pipeline = Pipeline(options=PipelineOptions(runtime_type_check=True))
    pipeline | Create([Row(val1=1)]) | DataframeTransform(lambda df: df)
    pipeline.run(){code}
    This raises a apache_beam.typehints.decorators.TypeCheckError:
{code:java}
  File ".....lib/python3.8/site-packages/apache_beam/typehints/typehints.py", 
line 416, in check_constraint
    raise SimpleTypeHintError
apache_beam.typehints.decorators.TypeCheckError: According to type-hint 
expected output should be of type <class 
'apache_beam.typehints.schemas.BeamSchema_118086df_671f_4643_a929_ba65de48e7e8'>.
 Instead, received 'BeamSchema_118086df_671f_4643_a929_ba65de48e7e8(val1=1)', 
an instance of type <class 
'apache_beam.typehints.schemas.BeamSchema_118086df_671f_4643_a929_ba65de48e7e8'>.
 [while running 'DataframeTransform/Unbatch 
'placeholder_DataFrame_140623617251840'/ParDo(_UnbatchNoIndex)'] {code}


> Apache Beam Python: Datafrane Transforms break when the option 
> runtime_type_check is enabled.
> ---------------------------------------------------------------------------------------------
>
>                 Key: BEAM-13905
>                 URL: https://issues.apache.org/jira/browse/BEAM-13905
>             Project: Beam
>          Issue Type: Bug
>          Components: runner-core
>    Affects Versions: 2.35.0
>         Environment: OS: Linux
> Python 3.8.12
>            Reporter: Benoit Clennett-Sirois
>            Priority: P2
>
> We have discovered a potential bug whereas when you execute a pipeline that 
> contains
> a DataframeTransform with the "runtime_type_check" option set to True, a 
> cryptic
> error is raised by Apache Beam typecheckng.
> Simple example to reproduce the bug:
>     
> {code:java}
> from apache_beam.options.pipeline_options import PipelineOptions
> from apache_beam import Pipeline, Create, Row
> from apache_beam.dataframe.transforms import DataframeTransform
> pipeline = Pipeline(options=PipelineOptions(runtime_type_check=True))
> pipeline | Create([Row(val1=1)]) | DataframeTransform(lambda df: df)
> pipeline.run(){code}
> This raises a apache_beam.typehints.decorators.TypeCheckError:
> {code:java}
> File ".....lib/python3.8/site-packages/apache_beam/typehints/typehints.py", 
> line 416, in check_constraint
>     raise SimpleTypeHintError
> apache_beam.typehints.decorators.TypeCheckError: According to type-hint 
> expected output should be of type <class 
> 'apache_beam.typehints.schemas.BeamSchema_118086df_671f_4643_a929_ba65de48e7e8'>.
>  Instead, received 'BeamSchema_118086df_671f_4643_a929_ba65de48e7e8(val1=1)', 
> an instance of type <class 
> 'apache_beam.typehints.schemas.BeamSchema_118086df_671f_4643_a929_ba65de48e7e8'>.
>  [while running 'DataframeTransform/Unbatch 
> 'placeholder_DataFrame_140623617251840'/ParDo(_UnbatchNoIndex)'] {code}
>  



--
This message was sent by Atlassian Jira
(v8.20.1#820001)

Reply via email to