[
https://issues.apache.org/jira/browse/BEAM-12904?focusedWorklogId=733501&page=com.atlassian.jira.plugin.system.issuetabpanels:worklog-tabpanel#worklog-733501
]
ASF GitHub Bot logged work on BEAM-12904:
-----------------------------------------
Author: ASF GitHub Bot
Created on: 26/Feb/22 12:44
Start Date: 26/Feb/22 12:44
Worklog Time Spent: 10m
Work Description: github-actions[bot] commented on pull request #15560:
URL: https://github.com/apache/beam/pull/15560#issuecomment-1052116186
This pull request has been closed due to lack of activity. If you think that
is incorrect, or the pull request requires review, you can revive the PR at any
time.
--
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
To unsubscribe, e-mail: [email protected]
For queries about this service, please contact Infrastructure at:
[email protected]
Issue Time Tracking
-------------------
Worklog Id: (was: 733501)
Time Spent: 3h 10m (was: 3h)
> Python DataflowRunner uses always default app_profile_id when writing to
> BigTable, when using custom write fn
> -------------------------------------------------------------------------------------------------------------
>
> Key: BEAM-12904
> URL: https://issues.apache.org/jira/browse/BEAM-12904
> Project: Beam
> Issue Type: Improvement
> Components: io-py-gcp, runner-dataflow
> Affects Versions: 2.28.0, 2.32.0
> Environment: Default Python SDK image for environment is
> apache/beam_python3.7_sdk:2.32.0
> Using provided Python SDK container image:
> gcr.io/cloud-dataflow/v1beta3/python37:2.32.0
> Reporter: Krzysztof Korzeniewski
> Priority: P3
> Labels: GCP
> Time Spent: 3h 10m
> Remaining Estimate: 0h
>
>
> There are 2 things:
> 1. apache_beam.io.gcp.bigtableio.WriteToBigTable has no support for custom
> App profiles at all
> 2. i've added support to custom DoFn, its passed correctly and works on
> DirectRunner, and even shows correct passed params in Dataflow logs, but
> still uses 'default' app_profile_id.
> Its easy to trigger just by passing not-existent app_profile_id:
> DirectRunner crashes with error, DataflowRunner uses 'default' and crashes if
> 'default' is multi-cluster routing and/or transactional writes are disabled.
> BigTable needs to use single-cluster routing to support transactional writes
> (read-modify-write, check-and-mutate). Thats why i need to use in 1 case
> custom app_profile_id.
> Custom write func:
> {code:java}
> from datetime import datetime, timezone
> import logging
> import apache_beam as beam
> from apache_beam.metrics import Metrics
> from apache_beam.transforms.display import DisplayDataItem
> from google.cloud.bigtable import Client, row_filters
> class BigTableWriteIfNotExistsConditionalFn(beam.DoFn):
> def __init__(self, project_id, instance_id, app_profile_id, table_id,
> column_family, column: str):
> super(BigTableWriteIfNotExistsConditionalFn, self).__init__()
> self.beam_options = {
> 'project_id': project_id,
> 'instance_id': instance_id,
> 'app_profile_id': app_profile_id,
> 'table_id': table_id,
> 'column_family': column_family,
> 'column': column,
> }
> self.table = None
> self.written = Metrics.counter(self.__class__, 'Written Row')
> def __getstate__(self):
> return self.beam_options
> def __setstate__(self, options):
> self.beam_options = options
> self.table = None
> self.written = Metrics.counter(self.__class__, 'Written Row')
> def start_bundle(self):
> if self.table is None:
> client = Client(project=self.beam_options['project_id'])
> instance = client.instance(self.beam_options['instance_id'])
> # add admin=True param in client ininitialization and uncomment below
> # for profile in instance.list_app_profiles():
> # logging.info('Profile name: %s', profile.name)
> # logging.info('Profile desc: %s', profile.description)
> # logging.info('Routing policyt type: %s', profile.routing_policy_type)
> # logging.info('Cluster id: %s', profile.cluster_id)
> # logging.info('Transactional writes: %s',
> profile.allow_transactional_writes)
> self.table = instance.table(table_id=self.beam_options['table_id'],
> app_profile_id=self.beam_options['app_profile_id'])
> def process(self, kvmessage):
> self.written.inc()
> row_key, value = kvmessage
> row_filter = row_filters.RowFilterChain(
>
> filters=[row_filters.FamilyNameRegexFilter(self.beam_options['column_family']),
>
> row_filters.ColumnQualifierRegexFilter(self.beam_options['column']),
> ])
> bt_row = self.table.conditional_row(row_key=row_key, filter_=row_filter)
> params = {'column_family_id': self.beam_options['column_family'],
> 'column': self.beam_options['column'], 'value': value, 'timestamp':
> datetime.fromtimestamp(0, timezone.utc), 'state': False}
> bt_row.set_cell(**params)
> bt_row.commit()
> def finish_bundle(self):
> pass
> def display_data(self):
> return {
> 'projectId': DisplayDataItem(
> self.beam_options['project_id'], label='Bigtable Project Id'),
> 'instanceId': DisplayDataItem(
> self.beam_options['instance_id'], label='Bigtable Instance Id'),
> 'tableId': DisplayDataItem(
> self.beam_options['table_id'], label='Bigtable Table Id')
> }
> {code}
> It processes Tuple[string, string] messages, where first string is BigTable
> row_key and second is cell value
--
This message was sent by Atlassian Jira
(v8.20.1#820001)