[ 
https://issues.apache.org/jira/browse/BEAM-4132?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=17510728#comment-17510728
 ] 

Valentyn Tymofieiev commented on BEAM-4132:
-------------------------------------------

I observed this issue in a user pipeline, but didn't observe it in a simplified 
version. I'll try to put together an example that reproduces the error I saw. 
Perhaps it is present in some corner cases, but may be not in a generat case.

> Element type inference doesn't work for multi-output DoFns
> ----------------------------------------------------------
>
>                 Key: BEAM-4132
>                 URL: https://issues.apache.org/jira/browse/BEAM-4132
>             Project: Beam
>          Issue Type: Bug
>          Components: sdk-py-core
>    Affects Versions: 2.4.0
>            Reporter: Chuan Yu Foo
>            Priority: P3
>              Labels: types
>          Time Spent: 2h 50m
>  Remaining Estimate: 0h
>
> TLDR: if you have a multi-output DoFn, then the non-main PCollections with 
> incorrectly have their element types set to None. This affects type checking 
> for pipelines involving these PCollections.
> Minimal example:
> {code}
> import apache_beam as beam
> class TripleDoFn(beam.DoFn):
>   def process(self, elem):
>     yield_elem
>     if elem % 2 == 0:
>       yield beam.pvalue.TaggedOutput('ten_times', elem * 10)
>     if elem % 3 == 0:
>       yield beam.pvalue.TaggedOutput('hundred_times', elem * 100)
>       
> @beam.typehints.with_input_types(int)
> @beam.typehints.with_output_types(int)
> class MultiplyBy(beam.DoFn):
>   def __init__(self, multiplier):
>     self._multiplier = multiplier
>   def process(self, elem):
>     return elem * self._multiplier
>   
> def main():
>   with beam.Pipeline() as p:
>     x, a, b = (
>       p
>       | 'Create' >> beam.Create([1, 2, 3])
>       | 'TripleDo' >> beam.ParDo(TripleDoFn()).with_outputs(
>         'ten_times', 'hundred_times', main='main_output'))
>     _ = a | 'MultiplyBy2' >> beam.ParDo(MultiplyBy(2))
> if __name__ == '__main__':
>   main()    
> {code}
> Running this yields the following error:
> {noformat}
> apache_beam.typehints.decorators.TypeCheckError: Type hint violation for 
> 'MultiplyBy2': requires <type 'int'> but got None for elem
> {noformat}
> Replacing {{a}} with {{b}} yields the same error. Replacing {{a}} with {{x}} 
> instead yields the following error:
> {noformat}
> apache_beam.typehints.decorators.TypeCheckError: Type hint violation for 
> 'MultiplyBy2': requires <type 'int'> but got Union[TaggedOutput, int] for elem
> {noformat}
> I would expect Beam to correctly infer that {{a}} and {{b}} have element 
> types of {{int}} rather than {{None}}, and I would also expect Beam to 
> correctly figure out that the element types of {{x}} are compatible with 
> {{int}}.



--
This message was sent by Atlassian Jira
(v8.20.1#820001)

Reply via email to