[ 
https://issues.apache.org/jira/browse/BEAM-14337?focusedWorklogId=772899&page=com.atlassian.jira.plugin.system.issuetabpanels:worklog-tabpanel#worklog-772899
 ]

ASF GitHub Bot logged work on BEAM-14337:
-----------------------------------------

                Author: ASF GitHub Bot
            Created on: 20/May/22 16:19
            Start Date: 20/May/22 16:19
    Worklog Time Spent: 10m 
      Work Description: TheNeuralBit commented on code in PR #17470:
URL: https://github.com/apache/beam/pull/17470#discussion_r878324657


##########
sdks/python/apache_beam/ml/inference/base.py:
##########
@@ -96,7 +107,9 @@ def expand(self, pcoll: beam.PCollection) -> 
beam.PCollection:
         pcoll
         # TODO(BEAM-14044): Hook into the batching DoFn APIs.
         | beam.BatchElements()
-        | beam.ParDo(_RunInferenceDoFn(self._model_loader, self._clock)))
+        | beam.ParDo(
+            _RunInferenceDoFn(
+                self._model_loader, self._prediction_params, self._clock)))

Review Comment:
   > But after a long discussion we settled on making these a side input.
   
   This is not a side input, this is a constant parameter. A side input comes 
from a PCollection wrapped in a PCollectionView and is passed to the ParDo: 
https://beam.apache.org/documentation/programming-guide/#side-inputs
   
   That's what I'm trying to suggest, making it a side input would justify a 
change to base RunInference, because it means you'd need to change the `ParDo` 
creation.
   
   





Issue Time Tracking
-------------------

    Worklog Id:     (was: 772899)
    Time Spent: 5h 40m  (was: 5.5h)

> Support **kwargs for PyTorch models.
> ------------------------------------
>
>                 Key: BEAM-14337
>                 URL: https://issues.apache.org/jira/browse/BEAM-14337
>             Project: Beam
>          Issue Type: Sub-task
>          Components: sdk-py-core
>            Reporter: Anand Inguva
>            Assignee: Andy Ye
>            Priority: P2
>          Time Spent: 5h 40m
>  Remaining Estimate: 0h
>
> Some models in Pytorch instantiating from torch.nn.Module, has extra 
> parameters in the forward function call. These extra parameters can be passed 
> as Dict or as positional arguments. 
> Example of PyTorch models supported by Hugging Face -> 
> [https://huggingface.co/bert-base-uncased]
> [Some torch models on Hugging 
> face|https://github.com/huggingface/transformers/blob/main/src/transformers/models/bert/modeling_bert.py]
> Eg: 
> [https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertModel]
> {code:java}
> inputs = {
>      input_ids: Tensor1,
>      attention_mask: Tensor2,
>      token_type_ids: Tensor3,
> } 
> model = BertModel.from_pretrained("bert-base-uncased") # which is a  
> # subclass of torch.nn.Module
> outputs = model(**inputs) # model forward method should be expecting the keys 
> in the inputs as the positional arguments.{code}
>  
> [Transformers|https://pytorch.org/hub/huggingface_pytorch-transformers/] 
> integrated in Pytorch is supported by Hugging Face as well. 
>  



--
This message was sent by Atlassian Jira
(v8.20.7#820007)

Reply via email to