[
https://issues.apache.org/jira/browse/BEAM-7131?focusedWorklogId=241939&page=com.atlassian.jira.plugin.system.issuetabpanels:worklog-tabpanel#worklog-241939
]
ASF GitHub Bot logged work on BEAM-7131:
----------------------------------------
Author: ASF GitHub Bot
Created on: 14/May/19 18:29
Start Date: 14/May/19 18:29
Worklog Time Spent: 10m
Work Description: ibzib commented on pull request #8558: [BEAM-7131]
Spark: cache executable stage output to prevent re-computation
URL: https://github.com/apache/beam/pull/8558#discussion_r283905278
##########
File path:
runners/spark/src/test/java/org/apache/beam/runners/spark/SparkPortableExecutionTest.java
##########
@@ -163,4 +168,75 @@ public void process(ProcessContext context) {
Thread.sleep(1000);
}
}
+
+ /**
+ * Verifies that each executable stage runs exactly once, even if that
executable stage has
+ * multiple outputs. While re-computation may be necessary in the event of
failure, re-computation
+ * of a whole executable stage is expensive and can cause unexpected
behavior when the executable
+ * stage has side effects (BEAM-7131).
+ */
+ @Test(timeout = 120_000)
+ public void testParDoWithSideEffects() throws Exception {
+ PipelineOptions options = PipelineOptionsFactory.create();
+ options.setRunner(CrashingRunner.class);
+ options
+ .as(PortablePipelineOptions.class)
+ .setDefaultEnvironmentType(Environments.ENVIRONMENT_EMBEDDED);
+ Pipeline pipeline = Pipeline.create(options);
+ Path path = FileSystems.getDefault().getPath(TEST_DIR_PREFIX,
UUID.randomUUID().toString());
+ File dir = new File(path.toString());
+ PCollection<String> a =
+ pipeline
+ .apply("impulse", Impulse.create())
+ .apply(
+ "A",
+ ParDo.of(
+ new DoFn<byte[], String>() {
+ @ProcessElement
+ public void process(ProcessContext context) throws
Exception {
+ context.output("A");
+ // ParDos A, B, and C will all be fused together into
the same executable
+ // stage. This check verifies that stage is not run
more than once by
+ // enacting a side effect via the local file system.
+ Assert.assertFalse("ParDo A should only have been run
once.", dir.exists());
+ dir.mkdirs();
+ }
+ }));
+ PCollection<KV<String, String>> b =
+ a.apply(
+ "B",
+ ParDo.of(
+ new DoFn<String, KV<String, String>>() {
+ @ProcessElement
+ public void process(ProcessContext context) throws Exception
{
+ context.output(KV.of(context.element(), "B"));
+ }
+ }));
+ PCollection<KV<String, String>> c =
+ a.apply(
+ "C",
+ ParDo.of(
+ new DoFn<String, KV<String, String>>() {
+ @ProcessElement
+ public void process(ProcessContext context) throws Exception
{
+ context.output(KV.of(context.element(), "C"));
+ }
+ }));
+ // Use GBKs to force re-computation of executable stage unless cached.
+ b.apply(GroupByKey.create());
+ c.apply(GroupByKey.create());
+ RunnerApi.Pipeline pipelineProto = PipelineTranslation.toProto(pipeline);
+ JobInvocation jobInvocation =
+ SparkJobInvoker.createJobInvocation(
+ "testParDoWithSideEffects",
+ "testParDoWithSideEffectsRetrievalToken",
+ sparkJobExecutor,
+ pipelineProto,
+ options.as(SparkPipelineOptions.class));
+ jobInvocation.start();
+ while (jobInvocation.getState() != Enum.DONE) {
+ Thread.sleep(1000);
Review comment:
Looks like `sameThreadExecutor` is deprecated and `newDirectExecutorService`
is preferred now, so I will use that
https://google.github.io/guava/releases/20.0/api/docs/com/google/common/util/concurrent/MoreExecutors.html#sameThreadExecutor--
----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
For queries about this service, please contact Infrastructure at:
[email protected]
Issue Time Tracking
-------------------
Worklog Id: (was: 241939)
Time Spent: 50m (was: 40m)
> Spark portable runner appears to be repeating work (in TFX example)
> -------------------------------------------------------------------
>
> Key: BEAM-7131
> URL: https://issues.apache.org/jira/browse/BEAM-7131
> Project: Beam
> Issue Type: Bug
> Components: runner-spark
> Reporter: Kyle Weaver
> Assignee: Kyle Weaver
> Priority: Major
> Time Spent: 50m
> Remaining Estimate: 0h
>
> I've been trying to run the TFX Chicago taxi example [1] on the Spark
> portable runner. TFDV works fine, but the preprocess step
> (preprocess_flink.sh [2]) fails with the following error:
> RuntimeError: AlreadyExistsError: file already exists [while running
> 'WriteTransformFn/WriteTransformFn']
> Assets are being written multiple times to different temp directories, which
> is okay, but the error occurs when they are copied to the same permanent
> output directory. Specifically, the copy tree operation in transform_fn_io.py
> [3] is run twice with the same output directory. The error doesn't occur when
> that code is modified to allow overwriting existing files, but that's only a
> shallow fix. While the TF transform should probably be made idempotent, this
> is also an issue with the Spark runner, which shouldn't be repeating work
> like this regularly (in the absence of a failure condition).
> [1] [https://github.com/tensorflow/tfx/tree/master/tfx/examples/chicago_taxi]
> [2]
> [https://github.com/tensorflow/tfx/blob/master/tfx/examples/chicago_taxi/preprocess_flink.sh]
> [3]
> [https://github.com/tensorflow/transform/blob/master/tensorflow_transform/beam/tft_beam_io/transform_fn_io.py#L33-L45]
--
This message was sent by Atlassian JIRA
(v7.6.3#76005)