John Patoch created BEAM-7599:
---------------------------------

             Summary: Python SDK: IntervalWindow cannot be cast to GlobalWindow 
on Cloud Dataflow Runner
                 Key: BEAM-7599
                 URL: https://issues.apache.org/jira/browse/BEAM-7599
             Project: Beam
          Issue Type: Bug
          Components: runner-dataflow
    Affects Versions: 2.13.0
            Reporter: John Patoch


Getting an error after deploying a pipeline built with the Python SDK on the 
Cloud Dataflow Runner.

 

-> The pipeline run seamlessly on the local DirectRunner.

 

{{{code:title=Stackdriver Trace|borderStyle=solid}}}

{{java.lang.ClassCastException: 
org.apache.beam.sdk.transforms.windowing.IntervalWindow cannot be cast to 
org.apache.beam.sdk.transforms.windowing.GlobalWindow at 
org.apache.beam.sdk.transforms.windowing.GlobalWindow$Coder.encode(GlobalWindow.java:59)
 at org.apache.beam.sdk.coders.Coder.encode(Coder.java:136) at 
org.apache.beam.sdk.util.CoderUtils.encodeToSafeStream(CoderUtils.java:82) at 
org.apache.beam.sdk.util.CoderUtils.encodeToByteArray(CoderUtils.java:66) at 
org.apache.beam.sdk.util.CoderUtils.encodeToByteArray(CoderUtils.java:51) at 
org.apache.beam.sdk.util.CoderUtils.encodeToBase64(CoderUtils.java:151) at 
org.apache.beam.runners.core.StateNamespaces$WindowNamespace.appendTo(StateNamespaces.java:117)
 at 
org.apache.beam.runners.dataflow.worker.WindmillStateInternals.encodeKey(WindmillStateInternals.java:256)
 at 
org.apache.beam.runners.dataflow.worker.WindmillStateInternals$WindmillValue.<init>(WindmillStateInternals.java:359)
 at 
org.apache.beam.runners.dataflow.worker.WindmillStateInternals$WindmillValue.<init>(WindmillStateInternals.java:337)
 at 
org.apache.beam.runners.dataflow.worker.WindmillStateInternals$CachingStateTable$1.bindValue(WindmillStateInternals.java:174)
 at org.apache.beam.runners.core.StateTags$2.bindValue(StateTags.java:69) at 
org.apache.beam.sdk.state.StateSpecs$ValueStateSpec.bind(StateSpecs.java:276) 
at 
org.apache.beam.sdk.state.StateSpecs$ValueStateSpec.bind(StateSpecs.java:266) 
at 
org.apache.beam.runners.core.StateTags$SimpleStateTag.bind(StateTags.java:296) 
at org.apache.beam.runners.core.StateTable.get(StateTable.java:60) at 
org.apache.beam.runners.dataflow.worker.WindmillStateInternals.state(WindmillStateInternals.java:334)
 at 
org.apache.beam.runners.core.ReduceFnContextFactory$StateAccessorImpl.access(ReduceFnContextFactory.java:207)
 at 
org.apache.beam.runners.core.triggers.TriggerStateMachineRunner.isClosed(TriggerStateMachineRunner.java:99)
 at 
org.apache.beam.runners.core.ReduceFnRunner.windowsThatAreOpen(ReduceFnRunner.java:275)
 at 
org.apache.beam.runners.core.ReduceFnRunner.processElements(ReduceFnRunner.java:345)
 at 
org.apache.beam.runners.dataflow.worker.StreamingGroupAlsoByWindowViaWindowSetFn.processElement(StreamingGroupAlsoByWindowViaWindowSetFn.java:94)
 at 
org.apache.beam.runners.dataflow.worker.StreamingGroupAlsoByWindowViaWindowSetFn.processElement(StreamingGroupAlsoByWindowViaWindowSetFn.java:42)
 at 
org.apache.beam.runners.dataflow.worker.GroupAlsoByWindowFnRunner.invokeProcessElement(GroupAlsoByWindowFnRunner.java:115)
 at 
org.apache.beam.runners.dataflow.worker.GroupAlsoByWindowFnRunner.processElement(GroupAlsoByWindowFnRunner.java:73)
 at 
org.apache.beam.runners.core.LateDataDroppingDoFnRunner.processElement(LateDataDroppingDoFnRunner.java:80)
 at 
org.apache.beam.runners.dataflow.worker.GroupAlsoByWindowsParDoFn.processElement(GroupAlsoByWindowsParDoFn.java:134)
 at 
org.apache.beam.runners.dataflow.worker.util.common.worker.ParDoOperation.process(ParDoOperation.java:44)
 at 
org.apache.beam.runners.dataflow.worker.util.common.worker.OutputReceiver.process(OutputReceiver.java:49)
 at 
org.apache.beam.runners.dataflow.worker.util.common.worker.ReadOperation.runReadLoop(ReadOperation.java:201)
 at 
org.apache.beam.runners.dataflow.worker.util.common.worker.ReadOperation.start(ReadOperation.java:159)
 at 
org.apache.beam.runners.dataflow.worker.util.common.worker.MapTaskExecutor.execute(MapTaskExecutor.java:77)
 at 
org.apache.beam.runners.dataflow.worker.fn.control.BeamFnMapTaskExecutor.execute(BeamFnMapTaskExecutor.java:125)
 at 
org.apache.beam.runners.dataflow.worker.StreamingDataflowWorker.process(StreamingDataflowWorker.java:1283)
 at 
org.apache.beam.runners.dataflow.worker.StreamingDataflowWorker.access$1000(StreamingDataflowWorker.java:147)
 at 
org.apache.beam.runners.dataflow.worker.StreamingDataflowWorker$6.run(StreamingDataflowWorker.java:1020)
 at 
java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) 
at 
java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) 
at java.lang.Thread.run(Thread.java:745)}}{{}}

{{{code}}}

 

{{Pipeline can be found here: 
[https://github.com/angulartist/hashtagsbattle/blob/master/pipelines/hashtagsbattle/tpl.py]}}



--
This message was sent by Atlassian JIRA
(v7.6.3#76005)

Reply via email to