Mariusz Rebandel created BEAM-7955:
--------------------------------------
Summary: Dynamic Writer - combining computed shards' number for
late events with window's
Key: BEAM-7955
URL: https://issues.apache.org/jira/browse/BEAM-7955
Project: Beam
Issue Type: Bug
Components: runner-dataflow
Affects Versions: 2.10.0
Reporter: Mariusz Rebandel
Runner attempts to combine shards' numbers computed for the window and
following panes with late events even if the window's accumulation mode is set
to DISCARDING_FIRED_PANES. This results in an exception thrown by
SingletonCombineFn.
Steps to recreate this behaviour:
- create dynamic writer with `withSharding()` option
- send stream of messages to Dataflow job via PubSub
- retain *some* messages
- let the rest of the messages flow to the job, until the watermark reaches
the window's end
- release retained messages
In case all PubSub traffic is halted and released after window's end, Beam
won't try to merge them. This only happens, if just a part of messages come as
late events.
Stacktrace:
{code:java}
java.lang.IllegalArgumentException: PCollection with more than one element
accessed as a singleton view. Consider using Combine.globally().asSingleton()
to combine the PCollection into a single value
org.apache.beam.sdk.transforms.View$SingletonCombineFn.apply(View.java:358)
org.apache.beam.sdk.transforms.Combine$BinaryCombineFn.addInput(Combine.java:448)
org.apache.beam.sdk.transforms.Combine$BinaryCombineFn.addInput(Combine.java:429)
org.apache.beam.runners.dataflow.worker.WindmillStateInternals$WindmillCombiningState.add(WindmillStateInternals.java:925)
org.apache.beam.runners.dataflow.worker.repackaged.org.apache.beam.runners.core.SystemReduceFn.processValue(SystemReduceFn.java:115)
org.apache.beam.runners.dataflow.worker.repackaged.org.apache.beam.runners.core.ReduceFnRunner.processElement(ReduceFnRunner.java:608)
org.apache.beam.runners.dataflow.worker.repackaged.org.apache.beam.runners.core.ReduceFnRunner.processElements(ReduceFnRunner.java:349)
org.apache.beam.runners.dataflow.worker.StreamingGroupAlsoByWindowViaWindowSetFn.processElement(StreamingGroupAlsoByWindowViaWindowSetFn.java:94)
org.apache.beam.runners.dataflow.worker.StreamingGroupAlsoByWindowViaWindowSetFn.processElement(StreamingGroupAlsoByWindowViaWindowSetFn.java:42)
org.apache.beam.runners.dataflow.worker.GroupAlsoByWindowFnRunner.invokeProcessElement(GroupAlsoByWindowFnRunner.java:115)
org.apache.beam.runners.dataflow.worker.GroupAlsoByWindowFnRunner.processElement(GroupAlsoByWindowFnRunner.java:73)
org.apache.beam.runners.dataflow.worker.repackaged.org.apache.beam.runners.core.LateDataDroppingDoFnRunner.processElement(LateDataDroppingDoFnRunner.java:80)
org.apache.beam.runners.dataflow.worker.GroupAlsoByWindowsParDoFn.processElement(GroupAlsoByWindowsParDoFn.java:134)
org.apache.beam.runners.dataflow.worker.util.common.worker.ParDoOperation.process(ParDoOperation.java:44)
org.apache.beam.runners.dataflow.worker.util.common.worker.OutputReceiver.process(OutputReceiver.java:49)
org.apache.beam.runners.dataflow.worker.util.common.worker.ReadOperation.runReadLoop(ReadOperation.java:201)
org.apache.beam.runners.dataflow.worker.util.common.worker.ReadOperation.start(ReadOperation.java:159)
org.apache.beam.runners.dataflow.worker.util.common.worker.MapTaskExecutor.execute(MapTaskExecutor.java:76)
org.apache.beam.runners.dataflow.worker.StreamingDataflowWorker.process(StreamingDataflowWorker.java:1233)
org.apache.beam.runners.dataflow.worker.StreamingDataflowWorker.access$1000(StreamingDataflowWorker.java:144)
org.apache.beam.runners.dataflow.worker.StreamingDataflowWorker$6.run(StreamingDataflowWorker.java:972)
java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
java.lang.Thread.run(Thread.java:745)
{code}
Sharding implementation:
{code:java}
class RecordCountSharding[T](recordsPerShard: Int) extends
PTransform[PCollection[T], PCollectionView[java.lang.Integer]] {
import RecordCountSharding._
override def expand(input: PCollection[T]):
PCollectionView[java.lang.Integer] = {
val count = input.apply(
Combine.globally(Count.combineFn[T]()).withoutDefaults()
)
val shardsNum = count.apply(
MapElements.into(TypeDescriptors.integers())
.via(Contextful.fn[java.lang.Long, java.lang.Integer] { count:
java.lang.Long =>
new java.lang.Integer(getShardsNum(count, recordsPerShard))
})
)
shardsNum.apply(View.asSingleton().withDefaultValue(ShardsNumForEmptyWindows))
}
}
object RecordCountSharding {
val ShardsNumForEmptyWindows = 0
def apply[T](recordsPerShard: Int): RecordCountSharding[T] = {
if (recordsPerShard <= 0) {
throw new IllegalArgumentException(s"recordsPerShard must be greater than
0! Got $recordsPerShard")
}
new RecordCountSharding[T](recordsPerShard)
}
def getShardsNum(count: Long, recordsPerShard: Int): Int = {
(count.toFloat / recordsPerShard.toFloat).ceil.toInt
}
}
{code}
--
This message was sent by Atlassian JIRA
(v7.6.14#76016)