[
https://issues.apache.org/jira/browse/BEAM-3342?focusedWorklogId=358293&page=com.atlassian.jira.plugin.system.issuetabpanels:worklog-tabpanel#worklog-358293
]
ASF GitHub Bot logged work on BEAM-3342:
----------------------------------------
Author: ASF GitHub Bot
Created on: 12/Dec/19 05:07
Start Date: 12/Dec/19 05:07
Worklog Time Spent: 10m
Work Description: mf2199 commented on pull request #8457: [BEAM-3342]
Create a Cloud Bigtable IO connector for Python
URL: https://github.com/apache/beam/pull/8457#discussion_r356960074
##########
File path: sdks/python/apache_beam/io/gcp/bigtableio.py
##########
@@ -122,22 +126,145 @@ class WriteToBigTable(beam.PTransform):
A PTransform that write a list of `DirectRow` into the Bigtable Table
"""
- def __init__(self, project_id=None, instance_id=None,
- table_id=None):
+ def __init__(self, project_id=None, instance_id=None, table_id=None):
""" The PTransform to access the Bigtable Write connector
Args:
project_id(str): GCP Project of to write the Rows
instance_id(str): GCP Instance to write the Rows
table_id(str): GCP Table to write the `DirectRows`
"""
super(WriteToBigTable, self).__init__()
- self.beam_options = {'project_id': project_id,
- 'instance_id': instance_id,
- 'table_id': table_id}
+ self._beam_options = {'project_id': project_id,
+ 'instance_id': instance_id,
+ 'table_id': table_id}
def expand(self, pvalue):
- beam_options = self.beam_options
+ beam_options = self._beam_options
return (pvalue
| beam.ParDo(_BigTableWriteFn(beam_options['project_id'],
beam_options['instance_id'],
beam_options['table_id'])))
+
+
+class _BigtableReadFn(beam.DoFn):
+ """ Creates the connector that can read rows for Beam pipeline
+
+ Args:
+ project_id(str): GCP Project ID
+ instance_id(str): GCP Instance ID
+ table_id(str): GCP Table ID
+
+ """
+
+ def __init__(self, project_id, instance_id, table_id, filter_=b''):
+ """ Constructor of the Read connector of Bigtable
+
+ Args:
+ project_id: [str] GCP Project of to write the Rows
+ instance_id: [str] GCP Instance to write the Rows
+ table_id: [str] GCP Table to write the `DirectRows`
+ filter_: [RowFilter] Filter to apply to columns in a row.
+ """
+ super(self.__class__, self).__init__()
+ self._initialize({'project_id': project_id,
+ 'instance_id': instance_id,
+ 'table_id': table_id,
+ 'filter_': filter_})
+
+ def __getstate__(self):
+ return self._beam_options
+
+ def __setstate__(self, options):
+ self._initialize(options)
+
+ def _initialize(self, options):
+ self._beam_options = options
+ self.table = None
+ self.sample_row_keys = None
+ self.row_count = Metrics.counter(self.__class__.__name__, 'Rows read')
+
+ def start_bundle(self):
+ if self.table is None:
+ self.table = Client(project=self._beam_options['project_id'])\
+ .instance(self._beam_options['instance_id'])\
+ .table(self._beam_options['table_id'])
+
+ def process(self, element, **kwargs):
+ for row in self.table.read_rows(start_key=element.start_position,
+ end_key=element.end_position,
+ filter_=self._beam_options['filter_']):
+ self.row_count.inc()
+ yield row
+
+ def display_data(self):
+ return {'projectId': DisplayDataItem(self._beam_options['project_id'],
+ label='Bigtable Project Id'),
+ 'instanceId': DisplayDataItem(self._beam_options['instance_id'],
+ label='Bigtable Instance Id'),
+ 'tableId': DisplayDataItem(self._beam_options['table_id'],
+ label='Bigtable Table Id'),
+ 'filter_': DisplayDataItem(str(self._beam_options['filter_']),
+ label='Bigtable Filter')
+ }
+
+
+class ReadFromBigTable(beam.PTransform):
+ def __init__(self, project_id, instance_id, table_id, filter_=b''):
+ """ The PTransform to access the Bigtable Read connector
+
+ Args:
+ project_id: [str] GCP Project of to read the Rows
+ instance_id): [str] GCP Instance to read the Rows
+ table_id): [str] GCP Table to read the Rows
+ filter_: [RowFilter] Filter to apply to columns in a row.
+ """
+ super(self.__class__, self).__init__()
+ self._beam_options = {'project_id': project_id,
+ 'instance_id': instance_id,
+ 'table_id': table_id,
+ 'filter_': filter_}
+
+ def __getstate__(self):
+ return self._beam_options
+
+ def __setstate__(self, options):
+ self._beam_options = options
+
+ def expand(self, pbegin):
+ from apache_beam.transforms import util
+
+ beam_options = self._beam_options
+ table = Client(project=beam_options['project_id'])\
+ .instance(beam_options['instance_id'])\
+ .table(beam_options['table_id'])
+ sample_row_keys = list(table.sample_row_keys())
+
+ if len(sample_row_keys) > 1 and sample_row_keys[0].row_key != b'':
+ SampleRowKey = namedtuple("SampleRowKey", "row_key offset_bytes")
+ first_key = SampleRowKey(b'', 0)
+ sample_row_keys.insert(0, first_key)
+ sample_row_keys = list(sample_row_keys)
+
+ def split_source(unused_impulse):
+ bundles = []
+ for i in range(1, len(sample_row_keys)):
Review comment:
@chamikaramj It might, but then how could it work a few months back? The
code below works now, with Dataflow, albeit from a standalone file, meaning
that pickling is probably not an issue:
```
... [imports and definitions] ...
class _BigTableReadFn(beam.DoFn):
def __init__(self, project_id, instance_id, table_id, filter_=None):
super(self.__class__, self).__init__()
self._options = {'project_id': project_id, 'instance_id':
instance_id, 'table_id': table_id, 'filter_': filter_}
self._initialize()
def _initialize(self):
from apache_beam.metrics import Metrics
self._table = None
self._counter = Metrics.counter(self.__class__, 'Rows Read')
def __getstate__(self):
return self._options
def __setstate__(self, options):
self._initialize()
self._options = options
def start_bundle(self):
from google.cloud.bigtable import Client
if self._table is None:
_client = Client(self._options['project_id'])
_instance =
_client.instance(self._options['instance_id'])
self._table = _instance.table(self._options['table_id'])
def process(self, source_bundle):
_start_key = source_bundle.start_position
_end_key = source_bundle.stop_position
for row in self._table.read_rows(_start_key, _end_key):
self._counter.inc()
yield row
def finish_bundle(self):
pass
def display_data(self):
return {'projectId':
DisplayDataItem(self._options['project_id'], label='Bigtable Project Id'),
'instanceId':
DisplayDataItem(self._options['instance_id'], label='Bigtable Instance Id'),
'tableId':
DisplayDataItem(self._options['table_id'], label='Bigtable Table Id')}
table = Client(PROJECT_ID, admin=True).instance(INSTANCE_ID).table(TABLE_ID)
keys = table.sample_row_keys()
key_list = list(keys)
SampleRowKey = namedtuple("SampleRowKey", "row_key offset_bytes")
key_list.insert(0, SampleRowKey(b'', 0))
def bundles():
for i in range(1, len(key_list)):
key_1 = key_list[i - 1].row_key
key_2 = key_list[i].row_key
size = key_list[i].offset_bytes - key_list[i - 1].offset_bytes
yield iobase.SourceBundle(size, None, key_1, key_2)
p = beam.Pipeline(options=p_options)
count = (p
| 'Bundles' >> beam.Create(bundles())
| 'Read' >> beam.ParDo(_BigTableReadFn(PROJECT_ID,
INSTANCE_ID, TABLE_ID))
| 'Count' >> Count.Globally()
)
result = p.run()
result.wait_until_finish()
... [assertions] ...
```
When packaged, it becomes more like this:
```
class _BigTableReadFn(beam.DoFn):
def __init__(self, project_id, instance_id, table_id, filter_=None):
super(_BigTableReadFn, self).__init__()
self._initialize({'project_id': project_id, 'instance_id': instance_id,
'table_id': table_id, 'filter_': filter_})
def _initialize(self, options):
self._options = options
self._table = None
self._counter = Metrics.counter(self.__class__, 'Rows Read')
def __getstate__(self):
return self._options
def __setstate__(self, options):
self._initialize(options)
def start_bundle(self):
if self._table is None:
_client = Client(project=self._options['project_id'])
_instance = _client.instance(self._options['instance_id'])
# noinspection PyAttributeOutsideInit
self._table = _instance.table(self._options['table_id'])
def process(self, source_bundle):
_start_key = source_bundle.start_position
_end_key = source_bundle.stop_position
for row in self._table.read_rows(_start_key, _end_key):
self._counter.inc()
yield row
def display_data(self):
return {'projectId': DisplayDataItem(self._options['project_id'],
label='Bigtable Project Id'),
'instanceId': DisplayDataItem(self._options['instance_id'],
label='Bigtable Instance Id'),
'tableId': DisplayDataItem(self._options['table_id'],
label='Bigtable Table Id')}
class ReadFromBigTable(beam.PTransform):
def __init__(self, project_id, instance_id, table_id, filter_=None):
super(self.__class__, self).__init__()
self._options = {'project_id': project_id,
'instance_id': instance_id,
'table_id': table_id,
'filter_': filter_}
def expand(self, pbegin):
table = Client(project=self._options['project_id'], admin=True) \
.instance(instance_id=self._options['instance_id']) \
.table(table_id=self._options['table_id'])
keys = list(table.sample_row_keys())
SampleRowKey = namedtuple("SampleRowKey", "row_key offset_bytes")
keys.insert(0, SampleRowKey(b'', 0))
def bundles():
for i in range(1, len(keys)):
key_1 = keys[i - 1].row_key
key_2 = keys[i].row_key
size = keys[i].offset_bytes - keys[i - 1].offset_bytes
yield iobase.SourceBundle(size, None, key_1, key_2)
return (pbegin
| 'Bundles' >> beam.Create(iter(bundles()))
| 'Reshuffle' >> util.Reshuffle()
| 'Read' >>
beam.ParDo(_BigtableReadFn(self._options['project_id'],
self._options['instance_id'], self._options['table_id']))
)
```
The latter breaks with Dataflow while still running under Direct. As you can
see, the logic is nearly identical, suggesting that some magic might happen
during [un]packaging.
----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
For queries about this service, please contact Infrastructure at:
[email protected]
Issue Time Tracking
-------------------
Worklog Id: (was: 358293)
Time Spent: 43.5h (was: 43h 20m)
> Create a Cloud Bigtable IO connector for Python
> -----------------------------------------------
>
> Key: BEAM-3342
> URL: https://issues.apache.org/jira/browse/BEAM-3342
> Project: Beam
> Issue Type: Bug
> Components: sdk-py-core
> Reporter: Solomon Duskis
> Assignee: Solomon Duskis
> Priority: Major
> Time Spent: 43.5h
> Remaining Estimate: 0h
>
> I would like to create a Cloud Bigtable python connector.
--
This message was sent by Atlassian Jira
(v8.3.4#803005)