[
https://issues.apache.org/jira/browse/BEAM-8335?focusedWorklogId=397015&page=com.atlassian.jira.plugin.system.issuetabpanels:worklog-tabpanel#worklog-397015
]
ASF GitHub Bot logged work on BEAM-8335:
----------------------------------------
Author: ASF GitHub Bot
Created on: 03/Mar/20 20:41
Start Date: 03/Mar/20 20:41
Worklog Time Spent: 10m
Work Description: robertwb commented on pull request #11005: [BEAM-8335]
Modify the StreamingCache to subclass the CacheManager
URL: https://github.com/apache/beam/pull/11005#discussion_r387268742
##########
File path: sdks/python/apache_beam/runners/direct/transform_evaluator.py
##########
@@ -421,8 +440,12 @@ def process_element(self, element):
main_output = list(self._outputs)[0]
bundle = self._evaluation_context.create_bundle(main_output)
for tv in event.timestamped_values:
- bundle.output(
- GlobalWindows.windowed_value(tv.value, timestamp=tv.timestamp))
+ # Unreify the value into the correct window.
+ try:
+ bundle.output(WindowedValue(**tv.value))
Review comment:
(For that matter, it seems odd to be mutating ElementEvents in an operator
called _WatermarkControllerEvaluator.)
----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
For queries about this service, please contact Infrastructure at:
[email protected]
Issue Time Tracking
-------------------
Worklog Id: (was: 397015)
Time Spent: 84h 20m (was: 84h 10m)
> Add streaming support to Interactive Beam
> -----------------------------------------
>
> Key: BEAM-8335
> URL: https://issues.apache.org/jira/browse/BEAM-8335
> Project: Beam
> Issue Type: Improvement
> Components: runner-py-interactive
> Reporter: Sam Rohde
> Assignee: Sam Rohde
> Priority: Major
> Time Spent: 84h 20m
> Remaining Estimate: 0h
>
> This issue tracks the work items to introduce streaming support to the
> Interactive Beam experience. This will allow users to:
> * Write and run a streaming job in IPython
> * Automatically cache records from unbounded sources
> * Add a replay experience that replays all cached records to simulate the
> original pipeline execution
> * Add controls to play/pause/stop/step individual elements from the cached
> records
> * Add ability to inspect/visualize unbounded PCollections
--
This message was sent by Atlassian Jira
(v8.3.4#803005)