[ https://issues.apache.org/jira/browse/CARBONDATA-4273?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]
Akash R Nilugal resolved CARBONDATA-4273. ----------------------------------------- Fix Version/s: 2.3.0 Assignee: Indhumathi Muthumurugesh Resolution: Fixed > Cannot create table with partitions in Spark in EMR > --------------------------------------------------- > > Key: CARBONDATA-4273 > URL: https://issues.apache.org/jira/browse/CARBONDATA-4273 > Project: CarbonData > Issue Type: Bug > Components: spark-integration > Affects Versions: 2.2.0 > Environment: Release label:emr-5.24.1 > Hadoop distribution:Amazon 2.8.5 > Applications: > Hive 2.3.4, Pig 0.17.0, Hue 4.4.0, Flink 1.8.0, Spark 2.4.2, Presto 0.219, > JupyterHub 0.9.6 > Jar complied with: > apache-carbondata:2.2.0 > spark:2.4.5 > hadoop:2.8.3 > Reporter: Bigicecream > Assignee: Indhumathi Muthumurugesh > Priority: Critical > Labels: EMR, spark > Fix For: 2.3.0 > > Time Spent: 2h 10m > Remaining Estimate: 0h > > > When trying to create a table like this: > {code:sql} > CREATE TABLE IF NOT EXISTS will_not_work( > timestamp string, > name string > ) > PARTITIONED BY (dt string, hr string) > STORED AS carbondata > LOCATION 's3a://my-bucket/CarbonDataTests/will_not_work > {code} > The folder 's3a://my-bucket/CarbonDataTests/will_not_work' is a not existing > folder > I get the following error: > {noformat} > org.apache.carbondata.common.exceptions.sql.MalformedCarbonCommandException: > Partition is not supported for external table > at > org.apache.spark.sql.parser.CarbonSparkSqlParserUtil$.buildTableInfoFromCatalogTable(CarbonSparkSqlParserUtil.scala:219) > at > org.apache.spark.sql.CarbonSource$.createTableInfo(CarbonSource.scala:235) > at > org.apache.spark.sql.CarbonSource$.createTableMeta(CarbonSource.scala:394) > at > org.apache.spark.sql.execution.command.table.CarbonCreateDataSourceTableCommand.processMetadata(CarbonCreateDataSourceTableCommand.scala:69) > at > org.apache.spark.sql.execution.command.MetadataCommand$$anonfun$run$1.apply(package.scala:137) > at > org.apache.spark.sql.execution.command.MetadataCommand$$anonfun$run$1.apply(package.scala:137) > at > org.apache.spark.sql.execution.command.Auditable$class.runWithAudit(package.scala:118) > at > org.apache.spark.sql.execution.command.MetadataCommand.runWithAudit(package.scala:134) > at > org.apache.spark.sql.execution.command.MetadataCommand.run(package.scala:137) > at > org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult$lzycompute(commands.scala:70) > at > org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult(commands.scala:68) > at > org.apache.spark.sql.execution.command.ExecutedCommandExec.executeCollect(commands.scala:79) > at org.apache.spark.sql.Dataset$$anonfun$6.apply(Dataset.scala:194) > at org.apache.spark.sql.Dataset$$anonfun$6.apply(Dataset.scala:194) > at org.apache.spark.sql.Dataset$$anonfun$53.apply(Dataset.scala:3364) > at > org.apache.spark.sql.execution.SQLExecution$$anonfun$withNewExecutionId$1.apply(SQLExecution.scala:78) > at > org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:125) > at > org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:73) > at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3363) > at org.apache.spark.sql.Dataset.<init>(Dataset.scala:194) > at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:79) > at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:643) > ... 64 elided > {noformat} -- This message was sent by Atlassian Jira (v8.3.4#803005)