[ 
https://issues.apache.org/jira/browse/MATH-303?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Daren Drummond updated MATH-303:
--------------------------------

    Description: 
CurveFitter.fit(ParametricRealFunction, double[]) throws 
ArrayIndexOutOfBoundsException at AbstractLeastSquaresOptimizer.java:187 when 
used with the  LevenbergMarquardtOptimizer  and the length of the initial guess 
array is greater than 1.  The code will run if the initialGuess array is of 
length 1, but then CurveFitter.fit() just returns the same value as the 
initialGuess array (I'll file this as a separate issue).  Here is my example 
code:
{code:title=CurveFitter with LevenbergMarquardtOptimizer and 
SimpleInverseFunction|borderStyle=solid}
  LevenbergMarquardtOptimizer optimizer = new LevenbergMarquardtOptimizer();
  CurveFitter fitter = new CurveFitter(optimizer);
  fitter.addObservedPoint(2.805d, 0.6934785852953367d);
  fitter.addObservedPoint(2.74333333333333d, 0.6306772025518496d);
  fitter.addObservedPoint(1.655d, 0.9474675497289684);
  fitter.addObservedPoint(1.725d, 0.9013594835804194d);
  SimpleInverseFunction sif = new SimpleInverseFunction(); // Class provided 
below
  double[] initialguess = new double[2];
  initialguess[0] = 1.0d;
  initialguess[1] = .5d;
  double[] bestCoefficients = fitter.fit(sif, initialguess); // <---- throws 
exception here

    /**
     * This is my implementation of ParametricRealFunction
     * Implements y = ax^-1 + b for use with an Apache CurveFitter 
implementation
      */
    private class SimpleInverseFunction implements ParametricRealFunction
    {
        public double value(double x, double[] doubles) throws 
FunctionEvaluationException
        {
            //y = ax^-1 + b
            //"double[] must include at least 1 but not more than 2 
coefficients."
            if(doubles == null || doubles.length ==0 || doubles.length > 2) 
throw new FunctionEvaluationException(doubles);
            double a = doubles[0];
            double b = 0;
            if(doubles.length >= 2) b = doubles[1];
            return a * Math.pow(x, -1d) + b;
        }
        public double[] gradient(double x, double[] doubles) throws 
FunctionEvaluationException
        {
            //derivative: -ax^-2
            //"double[] must include at least 1 but not more than 2 
coefficients."
            if(doubles == null || doubles.length ==0 || doubles.length > 2) 
throw new FunctionEvaluationException(doubles);
            double a = doubles[0];
            double b = 0;
            if(doubles.length >= 2) b = doubles[1];
            double derivative = -a * Math.pow(x, -2d);
            double[]gradientVector = new double[1];
            gradientVector[0] = derivative;
            return gradientVector; 
        }
    }

{code} 

This is the resulting stack trace:

java.lang.ArrayIndexOutOfBoundsException: 1
        at 
org.apache.commons.math.optimization.general.AbstractLeastSquaresOptimizer.updateJacobian(AbstractLeastSquaresOptimizer.java:187)
        at 
org.apache.commons.math.optimization.general.LevenbergMarquardtOptimizer.doOptimize(LevenbergMarquardtOptimizer.java:241)
        at 
org.apache.commons.math.optimization.general.AbstractLeastSquaresOptimizer.optimize(AbstractLeastSquaresOptimizer.java:346)
        at 
org.apache.commons.math.optimization.fitting.CurveFitter.fit(CurveFitter.java:134)
        at 
com.yieldsoftware.analyticstest.tasks.ppcbidder.CurveFittingTest.testFitnessRankCurveIntercept(CurveFittingTest.java:181)

  was:
CurveFitter.fit(ParametricRealFunction, double[]) throws 
ArrayIndexOutOfBoundsException at AbstractLeastSquaresOptimizer.java:187 when 
used with the  LevenbergMarquardtOptimizer  and the length of the initial guess 
array is greater than 1.  The code will run if the initialGuess array is of 
length 1, but then CurveFitter.fit() just returns the same value as the 
initialGuess array (I'll file this as a separate issue).  Here is my example 
code:

  LevenbergMarquardtOptimizer optimizer = new LevenbergMarquardtOptimizer();
  CurveFitter fitter = new CurveFitter(optimizer);
  fitter.addObservedPoint(2.805d, 0.6934785852953367d);
  fitter.addObservedPoint(2.74333333333333d, 0.6306772025518496d);
  fitter.addObservedPoint(1.655d, 0.9474675497289684);
  fitter.addObservedPoint(1.725d, 0.9013594835804194d);
  SimpleInverseFunction sif = new SimpleInverseFunction(); // Class provided 
below
  double[] initialguess = new double[2];
  initialguess[0] = 1.0d;
  initialguess[1] = .5d;
  double[] bestCoefficients = fitter.fit(sif, initialguess); // <---- throws 
exception here

    /**
     * This is my implementation of ParametricRealFunction
     * Implements y = ax^-1 + b for use with an Apache CurveFitter 
implementation
      */
    private class SimpleInverseFunction implements ParametricRealFunction
    {
        public double value(double x, double[] doubles) throws 
FunctionEvaluationException
        {
            //y = ax^-1 + b
            //"double[] must include at least 1 but not more than 2 
coefficients."
            if(doubles == null || doubles.length ==0 || doubles.length > 2) 
throw new FunctionEvaluationException(doubles);
            double a = doubles[0];
            double b = 0;
            if(doubles.length >= 2) b = doubles[1];
            return a * Math.pow(x, -1d) + b;
        }
        public double[] gradient(double x, double[] doubles) throws 
FunctionEvaluationException
        {
            //derivative: -ax^-2
            //"double[] must include at least 1 but not more than 2 
coefficients."
            if(doubles == null || doubles.length ==0 || doubles.length > 2) 
throw new FunctionEvaluationException(doubles);
            double a = doubles[0];
            double b = 0;
            if(doubles.length >= 2) b = doubles[1];
            double derivative = -a * Math.pow(x, -2d);
            double[]gradientVector = new double[1];
            gradientVector[0] = derivative;
            return gradientVector; 
        }
    }

This is the resulting stack trace:

java.lang.ArrayIndexOutOfBoundsException: 1
        at 
org.apache.commons.math.optimization.general.AbstractLeastSquaresOptimizer.updateJacobian(AbstractLeastSquaresOptimizer.java:187)
        at 
org.apache.commons.math.optimization.general.LevenbergMarquardtOptimizer.doOptimize(LevenbergMarquardtOptimizer.java:241)
        at 
org.apache.commons.math.optimization.general.AbstractLeastSquaresOptimizer.optimize(AbstractLeastSquaresOptimizer.java:346)
        at 
org.apache.commons.math.optimization.fitting.CurveFitter.fit(CurveFitter.java:134)
        at 
com.yieldsoftware.analyticstest.tasks.ppcbidder.CurveFittingTest.testFitnessRankCurveIntercept(CurveFittingTest.java:181)

    Environment: Java, Linux Ubuntu 9.04 (64 bit)  (was: Java, Linux Ubuntu 
9.04)

> CurveFitter.fit(ParametricRealFunction, double[]) used with 
> LevenbergMarquardtOptimizer throws ArrayIndexOutOfBoundsException when 
> double[] length > 1 (AbstractLeastSquaresOptimizer.java:187)
> -----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
>
>                 Key: MATH-303
>                 URL: https://issues.apache.org/jira/browse/MATH-303
>             Project: Commons Math
>          Issue Type: Bug
>    Affects Versions: 2.0
>         Environment: Java, Linux Ubuntu 9.04 (64 bit)
>            Reporter: Daren Drummond
>
> CurveFitter.fit(ParametricRealFunction, double[]) throws 
> ArrayIndexOutOfBoundsException at AbstractLeastSquaresOptimizer.java:187 when 
> used with the  LevenbergMarquardtOptimizer  and the length of the initial 
> guess array is greater than 1.  The code will run if the initialGuess array 
> is of length 1, but then CurveFitter.fit() just returns the same value as the 
> initialGuess array (I'll file this as a separate issue).  Here is my example 
> code:
> {code:title=CurveFitter with LevenbergMarquardtOptimizer and 
> SimpleInverseFunction|borderStyle=solid}
>   LevenbergMarquardtOptimizer optimizer = new LevenbergMarquardtOptimizer();
>   CurveFitter fitter = new CurveFitter(optimizer);
>   fitter.addObservedPoint(2.805d, 0.6934785852953367d);
>   fitter.addObservedPoint(2.74333333333333d, 0.6306772025518496d);
>   fitter.addObservedPoint(1.655d, 0.9474675497289684);
>   fitter.addObservedPoint(1.725d, 0.9013594835804194d);
>   SimpleInverseFunction sif = new SimpleInverseFunction(); // Class provided 
> below
>   double[] initialguess = new double[2];
>   initialguess[0] = 1.0d;
>   initialguess[1] = .5d;
>   double[] bestCoefficients = fitter.fit(sif, initialguess); // <---- throws 
> exception here
>     /**
>      * This is my implementation of ParametricRealFunction
>      * Implements y = ax^-1 + b for use with an Apache CurveFitter 
> implementation
>       */
>     private class SimpleInverseFunction implements ParametricRealFunction
>     {
>         public double value(double x, double[] doubles) throws 
> FunctionEvaluationException
>         {
>             //y = ax^-1 + b
>             //"double[] must include at least 1 but not more than 2 
> coefficients."
>             if(doubles == null || doubles.length ==0 || doubles.length > 2) 
> throw new FunctionEvaluationException(doubles);
>             double a = doubles[0];
>             double b = 0;
>             if(doubles.length >= 2) b = doubles[1];
>             return a * Math.pow(x, -1d) + b;
>         }
>         public double[] gradient(double x, double[] doubles) throws 
> FunctionEvaluationException
>         {
>             //derivative: -ax^-2
>             //"double[] must include at least 1 but not more than 2 
> coefficients."
>             if(doubles == null || doubles.length ==0 || doubles.length > 2) 
> throw new FunctionEvaluationException(doubles);
>             double a = doubles[0];
>             double b = 0;
>             if(doubles.length >= 2) b = doubles[1];
>             double derivative = -a * Math.pow(x, -2d);
>             double[]gradientVector = new double[1];
>             gradientVector[0] = derivative;
>             return gradientVector; 
>         }
>     }
> {code} 
> This is the resulting stack trace:
> java.lang.ArrayIndexOutOfBoundsException: 1
>       at 
> org.apache.commons.math.optimization.general.AbstractLeastSquaresOptimizer.updateJacobian(AbstractLeastSquaresOptimizer.java:187)
>       at 
> org.apache.commons.math.optimization.general.LevenbergMarquardtOptimizer.doOptimize(LevenbergMarquardtOptimizer.java:241)
>       at 
> org.apache.commons.math.optimization.general.AbstractLeastSquaresOptimizer.optimize(AbstractLeastSquaresOptimizer.java:346)
>       at 
> org.apache.commons.math.optimization.fitting.CurveFitter.fit(CurveFitter.java:134)
>       at 
> com.yieldsoftware.analyticstest.tasks.ppcbidder.CurveFittingTest.testFitnessRankCurveIntercept(CurveFittingTest.java:181)

-- 
This message is automatically generated by JIRA.
-
You can reply to this email to add a comment to the issue online.

Reply via email to