Improvement of Romberg extrapolation
------------------------------------

                 Key: MATH-325
                 URL: https://issues.apache.org/jira/browse/MATH-325
             Project: Commons Math
          Issue Type: Improvement
    Affects Versions: 2.0
            Reporter: Andreas mueller
             Fix For: 2.1


One can use a one-dimensional array (instead of Romberg's tableau) for 
extrapolating subsequent values.
Please have a look at following code fragments (which I've taken form the class 
RombergExtrapolator of
my MathLibrary). Feel free to use this code.


        /**
         * Default number of maximal extrapolation steps.
         */
        public static int DEF_MAXIMAL_EXTRAPOLATION_COUNT = 8;

        /**
         * The approximation order. <br>
         * Assume that f(h) is approximated by a function a(h), so that f(h) = 
a(h) +
         * O(h<sup>p</sup>). We say that p is the approximation order.
         */
        private int approximationOrder;
        private int extrapolationCount = 0;
        private double prevResult;
        
        /**
         * The estimate and tolerance may be used to deside wether to finalize 
the
         * iteration process (|estimate| < tolerance).
         */
         
        /** Holds the current estimated error. */
        private double estimate;
        /** Holds the current reached tolerance. */
        private double tolerance;
        
        private double result[] = new double[DEF_MAXIMAL_EXTRAPOLATION_COUNT + 
1];;

        /**
         * Set the maximal number of subsequent extrapolation steps.
         * 
         * @param maximalExtrapolationCount
         *            maximal extrapolation steps
         */
        public void setMaximalExtrapolationCount(int maximalExtrapolationCount)
        {
                result = new double[maximalExtrapolationCount + 1];
        }

        /**
         * Extrapolate a sequence of values by means of Romberg's algorithm.
         * Therefore a polynomial of degree maximalExtraploationCount
         * is used. Calculates the current estimate and tolerance using the
         * approximation order.
         * 
         * @param value
         *            value to extrapolate
         * @return extrapolated value
         */
        public double extrapolate(double value)
        {
                if (extrapolationCount == 0) {
                        // first estimate
                        estimate = value;
                        tolerance = -1.0;

                        prevResult = 0;
                }
 
                int i, m, m1 = idx(extrapolationCount);
                long k = (1 << approximationOrder);
                int imin = Math.max(0, extrapolationCount - (result.length - 
1));

                result[m1] = value;

                for (i = extrapolationCount - 1; i >= imin; i--) {
                        m = idx(i);
                        m1 = idx(i + 1);
                        result[m] = (k * result[m1] - result[m]) / (k - 1);
                        k <<= approximationOrder;
                }
                m1 = idx(i + 1);
                estimate = result[m1] - prevResult;
                tolerance = Math.abs(result[m1]) * relativeAccuracy + 
absoluteAccuracy;

                prevResult = result[m1];

                extrapolationCount++;

                return result[m1];
        }

        /**
         * Ring buffer index
         */
        private int idx(int i)
        {
                return (i % result.length);
        }



-- 
This message is automatically generated by JIRA.
-
You can reply to this email to add a comment to the issue online.

Reply via email to