[ 
https://issues.apache.org/jira/browse/NUMBERS-177?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Alex Herbert updated NUMBERS-177:
---------------------------------
    Attachment: erfcx.large.png

> Scaled complementary error function
> -----------------------------------
>
>                 Key: NUMBERS-177
>                 URL: https://issues.apache.org/jira/browse/NUMBERS-177
>             Project: Commons Numbers
>          Issue Type: New Feature
>          Components: gamma
>    Affects Versions: 1.1
>            Reporter: Alex Herbert
>            Priority: Minor
>             Fix For: 1.1
>
>         Attachments: erfcx.large.png, erfcx.medium.png
>
>
> Add a scaled complementary error function:
> {noformat}
> erfcx(x) = exp(x^2) * erfc(x)
> {noformat}
> For small x this can use the current rational function approximations for erf 
> or erfc and remove the scaling down by exp(-x^2). For large x this can use 
> the [continued fraction expansion of 
> erfc|https://en.wikipedia.org/wiki/Error_function#Continued_fraction_expansion]
>  and remove the scaling by e^-z:
> {noformat}
>              z                    1
> erfc z = -------- e^-z^2 -----------------------------
>          sqrt(pi)        z^2 +           1/2
>                                -----------------------
>                                1 +         1
>                                    -------------------
>                                    z^2 +      3/2
>                                          -------------
>                                          1 +     2
>                                              ---------
>                                              z^2 + ...
> {noformat}
> At very large x the rational function cannot be evaluated as {{z^2 + 0.5 ~ 
> z^2}} and the following approximation can be used:
> {noformat}
>               1      1
> erfcx z = -------- * -
>           sqrt(pi)   z
> {noformat}
> This occurs at 2^26 or approximately 6.71e7.



--
This message was sent by Atlassian Jira
(v8.20.1#820001)

Reply via email to