[
https://issues.apache.org/jira/browse/NUMBERS-193?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=17700868#comment-17700868
]
Gilles Sadowski commented on NUMBERS-193:
-----------------------------------------
bq. My point was that the existing code can be converted quite quickly to
create an object for the result as the result is always one of the arguments.
So all code can be converted by simply passing a new object for the result each
time
I understand that, but this object is mutable. Right? In effect,
{{DD.create()}} will return an "empty" instance, so there must be setters,
invoking them will take time... All this may not be equivalent to a factory
method that calls the constructor of an immutable instance...
> Add support for extended precision floating-point numbers
> ---------------------------------------------------------
>
> Key: NUMBERS-193
> URL: https://issues.apache.org/jira/browse/NUMBERS-193
> Project: Commons Numbers
> Issue Type: New Feature
> Reporter: Alex Herbert
> Priority: Major
> Labels: full-time, gsoc2023, part-time
>
> Add implementations of extended precision floating point numbers.
> An extended precision floating point number is a series of floating-point
> numbers that are non-overlapping such that:
> {noformat}
> double-double (a, b):
> |a| > |b|
> a == a + b{noformat}
> Common representations are double-double and quad-double (see for example
> David Bailey's paper on a quad-double library:
> [QD|https://www.davidhbailey.com/dhbpapers/qd.pdf]).
> Many computations in the Commons Numbers and Statistics libraries use
> extended precision computations where the accumulated error of a double would
> lead to complete cancellation of all significant bits; or create intermediate
> overflow of integer values.
> This project would formalise the code underlying these use cases with a
> generic library applicable for use in the case where the result is expected
> to be a finite value and using Java's BigDecimal and/or BigInteger negatively
> impacts performance.
> An example would be the average of long values where the intermediate sum
> overflows or the conversion to a double loses bits:
> {code:java}
> long[] values = {Long.MAX_VALUE, Long.MAX_VALUE};
> System.out.println(Arrays.stream(values).average().getAsDouble());
> System.out.println(Arrays.stream(values).mapToObj(BigDecimal::valueOf)
> .reduce(BigDecimal.ZERO, BigDecimal::add)
> .divide(BigDecimal.valueOf(values.length)).doubleValue());
> long[] values2 = {Long.MAX_VALUE, Long.MIN_VALUE};
> System.out.println(Arrays.stream(values2).asDoubleStream().average().getAsDouble());
> System.out.println(Arrays.stream(values2).mapToObj(BigDecimal::valueOf)
> .reduce(BigDecimal.ZERO, BigDecimal::add)
> .divide(BigDecimal.valueOf(values2.length)).doubleValue());
> {code}
> Outputs:
> {noformat}
> -1.0
> 9.223372036854776E18
> 0.0
> -0.5{noformat}
--
This message was sent by Atlassian Jira
(v8.20.10#820010)