[ 
https://issues.apache.org/jira/browse/NUMBERS-193?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Alex Herbert updated NUMBERS-193:
---------------------------------
    Component/s: ext

> Add support for extended precision floating-point numbers
> ---------------------------------------------------------
>
>                 Key: NUMBERS-193
>                 URL: https://issues.apache.org/jira/browse/NUMBERS-193
>             Project: Commons Numbers
>          Issue Type: New Feature
>          Components: ext
>            Reporter: Alex Herbert
>            Priority: Major
>              Labels: full-time, gsoc2023, part-time
>
> Add implementations of extended precision floating point numbers.
> An extended precision floating point number is a series of floating-point 
> numbers that are non-overlapping such that:
> {noformat}
> double-double (a, b):
> |a| > |b|
> a == a + b{noformat}
> Common representations are double-double and quad-double (see for example 
> David Bailey's paper on a quad-double library: 
> [QD|https://www.davidhbailey.com/dhbpapers/qd.pdf]).
> Many computations in the Commons Numbers and Statistics libraries use 
> extended precision computations where the accumulated error of a double would 
> lead to complete cancellation of all significant bits; or create intermediate 
> overflow of integer values.
> This project would formalise the code underlying these use cases with a 
> generic library applicable for use in the case where the result is expected 
> to be a finite value and using Java's BigDecimal and/or BigInteger negatively 
> impacts performance.
> An example would be the average of long values where the intermediate sum 
> overflows or the conversion to a double loses bits:
> {code:java}
> long[] values = {Long.MAX_VALUE, Long.MAX_VALUE}; 
> System.out.println(Arrays.stream(values).average().getAsDouble()); 
> System.out.println(Arrays.stream(values).mapToObj(BigDecimal::valueOf)
>     .reduce(BigDecimal.ZERO, BigDecimal::add)
>     .divide(BigDecimal.valueOf(values.length)).doubleValue());
> long[] values2 = {Long.MAX_VALUE, Long.MIN_VALUE}; 
> System.out.println(Arrays.stream(values2).asDoubleStream().average().getAsDouble());
>  System.out.println(Arrays.stream(values2).mapToObj(BigDecimal::valueOf)
>     .reduce(BigDecimal.ZERO, BigDecimal::add)
>     .divide(BigDecimal.valueOf(values2.length)).doubleValue());
> {code}
> Outputs:
> {noformat}
> -1.0
> 9.223372036854776E18
> 0.0
> -0.5{noformat}



--
This message was sent by Atlassian Jira
(v8.20.10#820010)

Reply via email to