[ 
https://issues.apache.org/jira/browse/MATH-342?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Phil Steitz updated MATH-342:
-----------------------------

    Affects Version/s:     (was: Nightly Builds)
                       2.0
        Fix Version/s:     (was: Nightly Builds)
                       2.1

> SVD crashes when applied to a strongly rectangular matrix (typical case of 
> least-squares problem)
> -------------------------------------------------------------------------------------------------
>
>                 Key: MATH-342
>                 URL: https://issues.apache.org/jira/browse/MATH-342
>             Project: Commons Math
>          Issue Type: Bug
>    Affects Versions: 2.0
>            Reporter: Dimitri Pourbaix
>            Assignee: Dimitri Pourbaix
>             Fix For: 2.1
>
>
> When SVD is applied to a strongly rectangular matrix (number of rows way 
> larger than number of columns, typical case of least-squares problem), finite 
> precision arithmetics shows up:
>  - in EigenDecompositionImpl.isSymmetric: a by-definition symmetric matrix 
> returns false;
>  - in EigenDecompositionImpl.findEigenVectors: too many iterations exception 

-- 
This message is automatically generated by JIRA.
-
You can reply to this email to add a comment to the issue online.

Reply via email to