Make Erf more precise in the tails by providing erfc
----------------------------------------------------

                 Key: MATH-364
                 URL: https://issues.apache.org/jira/browse/MATH-364
             Project: Commons Math
          Issue Type: Improvement
    Affects Versions: 2.1
            Reporter: Christian Winter
            Priority: Minor


First I want to thank Phil Steitz for making Erf stable in the tails through 
adjusting the choices in calculating the regularized gamma functions, see 
[Math-282|https://issues.apache.org/jira/browse/MATH-282]. However, the 
precision of Erf in the tails is limitted to fixed point precision because of 
the closeness to +/-1.0, although the Gamma class could provide much more 
accuracy. Thus I propose to add the methods erfc(double) and erf(double, 
double) to the class Erf:
{code:borderStyle=solid}
/**
 * Returns the complementary error function erfc(x).
 * @param x the value
 * @return the complementary error function erfc(x)
 * @throws MathException if the algorithm fails to converge
 */
public static double erfc(double x) throws MathException {
double ret = Gamma.regularizedGammaQ(0.5, x * x, 1.0e-15, 10000);
        if (x < 0) {
                ret = -ret;
        }
        return ret;
}

/**
 * Returns the difference of the error function values of x1 and x2.
 * @param x1 the first bound
 * @param x2 the second bound
 * @return erf(x2) - erf(x1)
 * @throws MathException
 */
public static double erf(double x1, double x2) throws MathException {
        if(x1>x2)
                return erf(x2, x1);
        if(x1==x2)
                return 0.0;
        
        double f1 = erf(x1);
        double f2 = erf(x2);
        
        if(f2 > 0.5)
                if(f1 > 0.5)
                        return erfc(x1) - erfc(x2);
                else
                        return (0.5-erfc(x2)) + (0.5-f1);
        else
                if(f1 < -0.5)
                        if(f2 < -0.5)
                                return erfc(-x2) - erfc(-x1);
                        else
                                return (0.5-erfc(-x1)) + (0.5+f2);
                else
                        return f2 - f1;
}
{code} 
Further this can be used to improve the NormalDistributionImpl through
{code:borderStyle=solid}
@Override
public double cumulativeProbability(double x0, double x1) throws MathException {
        return 0.5 * Erf.erf(
                        (x0 - getMean()) / (getStandardDeviation() * sqrt2),
                        (x1 - getMean()) / (getStandardDeviation() * sqrt2) );
}
{code}

-- 
This message is automatically generated by JIRA.
-
If you think it was sent incorrectly contact one of the administrators: 
https://issues.apache.org/jira/secure/Administrators.jspa
-
For more information on JIRA, see: http://www.atlassian.com/software/jira

        

Reply via email to