[ 
https://issues.apache.org/jira/browse/MATH-437?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=12933077#action_12933077
 ] 

Richard Simard commented on MATH-437:
-------------------------------------

   http://www.mail-archive.com/[email protected]/msg15829.html

F(n, x) = F(200, 0.031111):
                                 Lecuyer (2.0 ms.) = 0.012916146481628863
 KolmogorovSmirnovDistribution exact (51902.0 ms.) = 0.012149763742041911
    KolmogorovSmirnovDistribution !exact (9.0 ms.) = 0.012149763742041922


The argument x that you used in the Simard-L'écuyer program is not the same 
that you used for the other two programs. Of course you then get
very different results. If I compute exactly in Mathematica, I obtain

F(200, 0.031111) = 0.0129161464816289

which is very different than your exact results above and agrees well with our 
program.



=================================================
  Richard Simard    <[email protected]>
  Laboratoire de simulation et d'optimisation
  Université de Montréal, IRO



> Kolmogorov Smirnov Distribution
> -------------------------------
>
>                 Key: MATH-437
>                 URL: https://issues.apache.org/jira/browse/MATH-437
>             Project: Commons Math
>          Issue Type: New Feature
>            Reporter: Mikkel Meyer Andersen
>            Assignee: Mikkel Meyer Andersen
>            Priority: Minor
>         Attachments: KolmogorovSmirnovDistribution.java
>
>   Original Estimate: 0.25h
>  Remaining Estimate: 0.25h
>
> Kolmogorov-Smirnov test (see [1]) is used to test if one sample against a 
> known probability density functions or if two samples are from the same 
> distribution. To evaluate the test statistic, the Kolmogorov-Smirnov 
> distribution is used. Quite good asymptotics exist for the one-sided test, 
> but it's more difficult for the two-sided test.
> [1]: http://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test

-- 
This message is automatically generated by JIRA.
-
You can reply to this email to add a comment to the issue online.

Reply via email to