[ 
https://issues.apache.org/jira/browse/DRILL-6566?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16586681#comment-16586681
 ] 

Robert Hou commented on DRILL-6566:
-----------------------------------

Here is the explain plan for the hive generated parquet file.

{noformat}
| 00-00    Screen
00-01      Project(w_warehouse_name=[$0], w_warehouse_sq_ft=[$1], w_city=[$2], 
w_county=[$3], w_state=[$4], w_country=[$5], ship_carriers=[$6], year1=[$7], 
jan_sales=[$8], feb_sales=[$9], mar_sales=[$10], apr_sales=[$11], 
may_sales=[$12], jun_sales=[$13], jul_sales=[$14], aug_sales=[$15], 
sep_sales=[$16], oct_sales=[$17], nov_sales=[$18], dec_sales=[$19], 
jan_sales_per_sq_foot=[$20], feb_sales_per_sq_foot=[$21], 
mar_sales_per_sq_foot=[$22], apr_sales_per_sq_foot=[$23], 
may_sales_per_sq_foot=[$24], jun_sales_per_sq_foot=[$25], 
jul_sales_per_sq_foot=[$26], aug_sales_per_sq_foot=[$27], 
sep_sales_per_sq_foot=[$28], oct_sales_per_sq_foot=[$29], 
nov_sales_per_sq_foot=[$30], dec_sales_per_sq_foot=[$31], jan_net=[$32], 
feb_net=[$33], mar_net=[$34], apr_net=[$35], may_net=[$36], jun_net=[$37], 
jul_net=[$38], aug_net=[$39], sep_net=[$40], oct_net=[$41], nov_net=[$42], 
dec_net=[$43])
00-02        SelectionVectorRemover
00-03          Limit(fetch=[100])
00-04            SelectionVectorRemover
00-05              TopN(limit=[100])
00-06                HashAgg(group=[{0, 1, 2, 3, 4, 5, 6, 7}], 
jan_sales=[SUM($8)], feb_sales=[SUM($9)], mar_sales=[SUM($10)], 
apr_sales=[SUM($11)], may_sales=[SUM($12)], jun_sales=[SUM($13)], 
jul_sales=[SUM($14)], aug_sales=[SUM($15)], sep_sales=[SUM($16)], 
oct_sales=[SUM($17)], nov_sales=[SUM($18)], dec_sales=[SUM($19)], 
jan_sales_per_sq_foot=[SUM($20)], feb_sales_per_sq_foot=[SUM($21)], 
mar_sales_per_sq_foot=[SUM($22)], apr_sales_per_sq_foot=[SUM($23)], 
may_sales_per_sq_foot=[SUM($24)], jun_sales_per_sq_foot=[SUM($25)], 
jul_sales_per_sq_foot=[SUM($26)], aug_sales_per_sq_foot=[SUM($27)], 
sep_sales_per_sq_foot=[SUM($28)], oct_sales_per_sq_foot=[SUM($29)], 
nov_sales_per_sq_foot=[SUM($30)], dec_sales_per_sq_foot=[SUM($31)], 
jan_net=[SUM($32)], feb_net=[SUM($33)], mar_net=[SUM($34)], apr_net=[SUM($35)], 
may_net=[SUM($36)], jun_net=[SUM($37)], jul_net=[SUM($38)], aug_net=[SUM($39)], 
sep_net=[SUM($40)], oct_net=[SUM($41)], nov_net=[SUM($42)], dec_net=[SUM($43)])
00-07                  Project(w_warehouse_name=[$0], w_warehouse_sq_ft=[$1], 
w_city=[$2], w_county=[$3], w_state=[$4], w_country=[$5], ship_carriers=[$6], 
year1=[$7], jan_sales=[$8], feb_sales=[$9], mar_sales=[$10], apr_sales=[$11], 
may_sales=[$12], jun_sales=[$13], jul_sales=[$14], aug_sales=[$15], 
sep_sales=[$16], oct_sales=[$17], nov_sales=[$18], dec_sales=[$19], $f20=[$20], 
$f21=[$21], $f22=[$22], $f23=[$23], $f24=[$24], $f25=[$25], $f26=[$26], 
$f27=[$27], $f28=[$28], $f29=[$29], $f30=[$30], $f31=[$31], jan_net=[$32], 
feb_net=[$33], mar_net=[$34], apr_net=[$35], may_net=[$36], jun_net=[$37], 
jul_net=[$38], aug_net=[$39], sep_net=[$40], oct_net=[$41], nov_net=[$42], 
dec_net=[$43])
00-08                    HashToRandomExchange(dist0=[[$0]])
01-01                      UnorderedMuxExchange
02-01                        Project(w_warehouse_name=[$0], 
w_warehouse_sq_ft=[$1], w_city=[$2], w_county=[$3], w_state=[$4], 
w_country=[$5], ship_carriers=[$6], year1=[$7], jan_sales=[$8], feb_sales=[$9], 
mar_sales=[$10], apr_sales=[$11], may_sales=[$12], jun_sales=[$13], 
jul_sales=[$14], aug_sales=[$15], sep_sales=[$16], oct_sales=[$17], 
nov_sales=[$18], dec_sales=[$19], $f20=[$20], $f21=[$21], $f22=[$22], 
$f23=[$23], $f24=[$24], $f25=[$25], $f26=[$26], $f27=[$27], $f28=[$28], 
$f29=[$29], $f30=[$30], $f31=[$31], jan_net=[$32], feb_net=[$33], 
mar_net=[$34], apr_net=[$35], may_net=[$36], jun_net=[$37], jul_net=[$38], 
aug_net=[$39], sep_net=[$40], oct_net=[$41], nov_net=[$42], dec_net=[$43], 
E_X_P_R_H_A_S_H_F_I_E_L_D=[hash32AsDouble($0, 1301011)])
02-02                          UnionAll(all=[true])
02-04                            Project(w_warehouse_name=[$0], 
w_warehouse_sq_ft=[$1], w_city=[$2], w_county=[$3], w_state=[$4], 
w_country=[$5], ship_carriers=[||(||('ZOUROS', ','), 'ZHOU')], year1=[$6], 
jan_sales=[$7], feb_sales=[$8], mar_sales=[$9], apr_sales=[$10], 
may_sales=[$11], jun_sales=[$12], jul_sales=[$13], aug_sales=[$14], 
sep_sales=[$15], oct_sales=[$16], nov_sales=[$17], dec_sales=[$18], $f20=[/($7, 
$1)], $f21=[/($8, $1)], $f22=[/($9, $1)], $f23=[/($10, $1)], $f24=[/($11, $1)], 
$f25=[/($12, $1)], $f26=[/($13, $1)], $f27=[/($14, $1)], $f28=[/($15, $1)], 
$f29=[/($16, $1)], $f30=[/($17, $1)], $f31=[/($18, $1)], jan_net=[$19], 
feb_net=[$20], mar_net=[$21], apr_net=[$22], may_net=[$23], jun_net=[$24], 
jul_net=[$25], aug_net=[$26], sep_net=[$27], oct_net=[$28], nov_net=[$29], 
dec_net=[$30])
02-06                              HashAgg(group=[{0, 1, 2, 3, 4, 5, 6}], 
jan_sales=[SUM($7)], feb_sales=[SUM($8)], mar_sales=[SUM($9)], 
apr_sales=[SUM($10)], may_sales=[SUM($11)], jun_sales=[SUM($12)], 
jul_sales=[SUM($13)], aug_sales=[SUM($14)], sep_sales=[SUM($15)], 
oct_sales=[SUM($16)], nov_sales=[SUM($17)], dec_sales=[SUM($18)], 
jan_net=[SUM($19)], feb_net=[SUM($20)], mar_net=[SUM($21)], apr_net=[SUM($22)], 
may_net=[SUM($23)], jun_net=[SUM($24)], jul_net=[SUM($25)], aug_net=[SUM($26)], 
sep_net=[SUM($27)], oct_net=[SUM($28)], nov_net=[SUM($29)], dec_net=[SUM($30)])
02-08                                Project(w_warehouse_name=[$0], 
w_warehouse_sq_ft=[$1], w_city=[$2], w_county=[$3], w_state=[$4], 
w_country=[$5], year1=[$6], $f7=[$7], $f8=[$8], $f9=[$9], $f10=[$10], 
$f11=[$11], $f12=[$12], $f13=[$13], $f14=[$14], $f15=[$15], $f16=[$16], 
$f17=[$17], $f18=[$18], $f19=[$19], $f20=[$20], $f21=[$21], $f22=[$22], 
$f23=[$23], $f24=[$24], $f25=[$25], $f26=[$26], $f27=[$27], $f28=[$28], 
$f29=[$29], $f30=[$30])
02-10                                  HashToRandomExchange(dist0=[[$0]], 
dist1=[[$1]], dist2=[[$2]], dist3=[[$3]], dist4=[[$4]], dist5=[[$5]], 
dist6=[[$6]])
03-01                                    UnorderedMuxExchange
05-01                                      Project(w_warehouse_name=[$0], 
w_warehouse_sq_ft=[$1], w_city=[$2], w_county=[$3], w_state=[$4], 
w_country=[$5], year1=[$6], $f7=[$7], $f8=[$8], $f9=[$9], $f10=[$10], 
$f11=[$11], $f12=[$12], $f13=[$13], $f14=[$14], $f15=[$15], $f16=[$16], 
$f17=[$17], $f18=[$18], $f19=[$19], $f20=[$20], $f21=[$21], $f22=[$22], 
$f23=[$23], $f24=[$24], $f25=[$25], $f26=[$26], $f27=[$27], $f28=[$28], 
$f29=[$29], $f30=[$30], E_X_P_R_H_A_S_H_F_I_E_L_D=[hash32AsDouble($6, 
hash32AsDouble($5, hash32AsDouble($4, hash32AsDouble($3, hash32AsDouble($2, 
hash32AsDouble($1, hash32AsDouble($0, 1301011)))))))])
05-02                                        Project(w_warehouse_name=[$4], 
w_warehouse_sq_ft=[$5], w_city=[$6], w_county=[$7], w_state=[$8], 
w_country=[$9], year1=[$10], $f7=[CASE(=($11, 1), *($2, $1), 0)], 
$f8=[CASE(=($11, 2), *($2, $1), 0)], $f9=[CASE(=($11, 3), *($2, $1), 0)], 
$f10=[CASE(=($11, 4), *($2, $1), 0)], $f11=[CASE(=($11, 5), *($2, $1), 0)], 
$f12=[CASE(=($11, 6), *($2, $1), 0)], $f13=[CASE(=($11, 7), *($2, $1), 0)], 
$f14=[CASE(=($11, 8), *($2, $1), 0)], $f15=[CASE(=($11, 9), *($2, $1), 0)], 
$f16=[CASE(=($11, 10), *($2, $1), 0)], $f17=[CASE(=($11, 11), *($2, $1), 0)], 
$f18=[CASE(=($11, 12), *($2, $1), 0)], $f19=[CASE(=($11, 1), *($3, $1), 0)], 
$f20=[CASE(=($11, 2), *($3, $1), 0)], $f21=[CASE(=($11, 3), *($3, $1), 0)], 
$f22=[CASE(=($11, 4), *($3, $1), 0)], $f23=[CASE(=($11, 5), *($3, $1), 0)], 
$f24=[CASE(=($11, 6), *($3, $1), 0)], $f25=[CASE(=($11, 7), *($3, $1), 0)], 
$f26=[CASE(=($11, 8), *($3, $1), 0)], $f27=[CASE(=($11, 9), *($3, $1), 0)], 
$f28=[CASE(=($11, 10), *($3, $1), 0)], $f29=[CASE(=($11, 11), *($3, $1), 0)], 
$f30=[CASE(=($11, 12), *($3, $1), 0)])
05-03                                          HashJoin(condition=[=($0, $12)], 
joinType=[inner])
05-05                                            Project(ws_ship_mode_sk=[$1], 
ws_quantity=[$2], ws_ext_sales_price=[$3], ws_net_paid_inc_ship=[$4], 
w_warehouse_name=[$5], w_warehouse_sq_ft=[$6], w_city=[$7], w_county=[$8], 
w_state=[$9], w_country=[$10], d_year=[$11], d_moy=[$12])
05-07                                              HashJoin(condition=[=($0, 
$13)], joinType=[inner])
05-10                                                
Project(ws_sold_time_sk=[$1], ws_ship_mode_sk=[$2], ws_quantity=[$3], 
ws_ext_sales_price=[$4], ws_net_paid_inc_ship=[$5], w_warehouse_name=[$6], 
w_warehouse_sq_ft=[$7], w_city=[$8], w_county=[$9], w_state=[$10], 
w_country=[$11], d_year=[$13], d_moy=[$14])
05-13                                                  
HashJoin(condition=[=($0, $12)], joinType=[inner])
05-17                                                    
Project(ws_sold_date_sk=[$0], ws_sold_time_sk=[$1], ws_ship_mode_sk=[$2], 
ws_quantity=[$4], ws_ext_sales_price=[$5], ws_net_paid_inc_ship=[$6], 
w_warehouse_name=[$8], w_warehouse_sq_ft=[$9], w_city=[$10], w_county=[$11], 
w_state=[$12], w_country=[$13])
05-20                                                      
HashJoin(condition=[=($3, $7)], joinType=[inner])
05-24                                                        
Project(ws_sold_date_sk=[$0], ws_sold_time_sk=[$1], ws_ship_mode_sk=[$2], 
ws_warehouse_sk=[$3], ws_quantity=[$4], ws_ext_sales_price=[$5], 
ws_net_paid_inc_ship=[$6])
05-27                                                          
Scan(groupscan=[HiveDrillNativeParquetScan [entries=[ReadEntryWithPath 
[path=/drill/testdata/tpcds1_hive1/web_sales/web_sales.parquet]], numFiles=1, 
numRowGroups=1, columns=[`ws_sold_date_sk`, `ws_sold_time_sk`, 
`ws_ship_mode_sk`, `ws_warehouse_sk`, `ws_quantity`, `ws_ext_sales_price`, 
`ws_net_paid_inc_ship`]]])
05-23                                                        
Project(w_warehouse_sk=[$0], w_warehouse_name=[$1], w_warehouse_sq_ft=[$2], 
w_city=[$3], w_county=[$4], w_state=[$5], w_country=[$6])
05-26                                                          
Scan(groupscan=[HiveDrillNativeParquetScan [entries=[ReadEntryWithPath 
[path=/drill/testdata/tpcds1_hive1/warehouse/warehouse.parquet]], numFiles=1, 
numRowGroups=1, columns=[`w_warehouse_sk`, `w_warehouse_name`, 
`w_warehouse_sq_ft`, `w_city`, `w_county`, `w_state`, `w_country`]]])
05-16                                                    SelectionVectorRemover
05-19                                                      F |
{noformat}

> Jenkins Regression: TPCDS query 66 fails with RESOURCE ERROR: One or more 
> nodes ran out of memory while executing the query.  AGGR OOM at First Phase.
> ------------------------------------------------------------------------------------------------------------------------------------------------------
>
>                 Key: DRILL-6566
>                 URL: https://issues.apache.org/jira/browse/DRILL-6566
>             Project: Apache Drill
>          Issue Type: Bug
>          Components: Execution - Relational Operators
>    Affects Versions: 1.14.0
>            Reporter: Robert Hou
>            Assignee: Timothy Farkas
>            Priority: Critical
>             Fix For: 1.15.0
>
>
> This is TPCDS Query 66.
> Query: tpcds/tpcds_sf1/hive-generated-parquet/hive1_native/query66.sql
> SELECT w_warehouse_name,
> w_warehouse_sq_ft,
> w_city,
> w_county,
> w_state,
> w_country,
> ship_carriers,
> year1,
> Sum(jan_sales)                     AS jan_sales,
> Sum(feb_sales)                     AS feb_sales,
> Sum(mar_sales)                     AS mar_sales,
> Sum(apr_sales)                     AS apr_sales,
> Sum(may_sales)                     AS may_sales,
> Sum(jun_sales)                     AS jun_sales,
> Sum(jul_sales)                     AS jul_sales,
> Sum(aug_sales)                     AS aug_sales,
> Sum(sep_sales)                     AS sep_sales,
> Sum(oct_sales)                     AS oct_sales,
> Sum(nov_sales)                     AS nov_sales,
> Sum(dec_sales)                     AS dec_sales,
> Sum(jan_sales / w_warehouse_sq_ft) AS jan_sales_per_sq_foot,
> Sum(feb_sales / w_warehouse_sq_ft) AS feb_sales_per_sq_foot,
> Sum(mar_sales / w_warehouse_sq_ft) AS mar_sales_per_sq_foot,
> Sum(apr_sales / w_warehouse_sq_ft) AS apr_sales_per_sq_foot,
> Sum(may_sales / w_warehouse_sq_ft) AS may_sales_per_sq_foot,
> Sum(jun_sales / w_warehouse_sq_ft) AS jun_sales_per_sq_foot,
> Sum(jul_sales / w_warehouse_sq_ft) AS jul_sales_per_sq_foot,
> Sum(aug_sales / w_warehouse_sq_ft) AS aug_sales_per_sq_foot,
> Sum(sep_sales / w_warehouse_sq_ft) AS sep_sales_per_sq_foot,
> Sum(oct_sales / w_warehouse_sq_ft) AS oct_sales_per_sq_foot,
> Sum(nov_sales / w_warehouse_sq_ft) AS nov_sales_per_sq_foot,
> Sum(dec_sales / w_warehouse_sq_ft) AS dec_sales_per_sq_foot,
> Sum(jan_net)                       AS jan_net,
> Sum(feb_net)                       AS feb_net,
> Sum(mar_net)                       AS mar_net,
> Sum(apr_net)                       AS apr_net,
> Sum(may_net)                       AS may_net,
> Sum(jun_net)                       AS jun_net,
> Sum(jul_net)                       AS jul_net,
> Sum(aug_net)                       AS aug_net,
> Sum(sep_net)                       AS sep_net,
> Sum(oct_net)                       AS oct_net,
> Sum(nov_net)                       AS nov_net,
> Sum(dec_net)                       AS dec_net
> FROM   (SELECT w_warehouse_name,
> w_warehouse_sq_ft,
> w_city,
> w_county,
> w_state,
> w_country,
> 'ZOUROS'
> \|\| ','
> \|\| 'ZHOU' AS ship_carriers,
> d_year    AS year1,
> Sum(CASE
> WHEN d_moy = 1 THEN ws_ext_sales_price * ws_quantity
> ELSE 0
> END)  AS jan_sales,
> Sum(CASE
> WHEN d_moy = 2 THEN ws_ext_sales_price * ws_quantity
> ELSE 0
> END)  AS feb_sales,
> Sum(CASE
> WHEN d_moy = 3 THEN ws_ext_sales_price * ws_quantity
> ELSE 0
> END)  AS mar_sales,
> Sum(CASE
> WHEN d_moy = 4 THEN ws_ext_sales_price * ws_quantity
> ELSE 0
> END)  AS apr_sales,
> Sum(CASE
> WHEN d_moy = 5 THEN ws_ext_sales_price * ws_quantity
> ELSE 0
> END)  AS may_sales,
> Sum(CASE
> WHEN d_moy = 6 THEN ws_ext_sales_price * ws_quantity
> ELSE 0
> END)  AS jun_sales,
> Sum(CASE
> WHEN d_moy = 7 THEN ws_ext_sales_price * ws_quantity
> ELSE 0
> END)  AS jul_sales,
> Sum(CASE
> WHEN d_moy = 8 THEN ws_ext_sales_price * ws_quantity
> ELSE 0
> END)  AS aug_sales,
> Sum(CASE
> WHEN d_moy = 9 THEN ws_ext_sales_price * ws_quantity
> ELSE 0
> END)  AS sep_sales,
> Sum(CASE
> WHEN d_moy = 10 THEN ws_ext_sales_price * ws_quantity
> ELSE 0
> END)  AS oct_sales,
> Sum(CASE
> WHEN d_moy = 11 THEN ws_ext_sales_price * ws_quantity
> ELSE 0
> END)  AS nov_sales,
> Sum(CASE
> WHEN d_moy = 12 THEN ws_ext_sales_price * ws_quantity
> ELSE 0
> END)  AS dec_sales,
> Sum(CASE
> WHEN d_moy = 1 THEN ws_net_paid_inc_ship * ws_quantity
> ELSE 0
> END)  AS jan_net,
> Sum(CASE
> WHEN d_moy = 2 THEN ws_net_paid_inc_ship * ws_quantity
> ELSE 0
> END)  AS feb_net,
> Sum(CASE
> WHEN d_moy = 3 THEN ws_net_paid_inc_ship * ws_quantity
> ELSE 0
> END)  AS mar_net,
> Sum(CASE
> WHEN d_moy = 4 THEN ws_net_paid_inc_ship * ws_quantity
> ELSE 0
> END)  AS apr_net,
> Sum(CASE
> WHEN d_moy = 5 THEN ws_net_paid_inc_ship * ws_quantity
> ELSE 0
> END)  AS may_net,
> Sum(CASE
> WHEN d_moy = 6 THEN ws_net_paid_inc_ship * ws_quantity
> ELSE 0
> END)  AS jun_net,
> Sum(CASE
> WHEN d_moy = 7 THEN ws_net_paid_inc_ship * ws_quantity
> ELSE 0
> END)  AS jul_net,
> Sum(CASE
> WHEN d_moy = 8 THEN ws_net_paid_inc_ship * ws_quantity
> ELSE 0
> END)  AS aug_net,
> Sum(CASE
> WHEN d_moy = 9 THEN ws_net_paid_inc_ship * ws_quantity
> ELSE 0
> END)  AS sep_net,
> Sum(CASE
> WHEN d_moy = 10 THEN ws_net_paid_inc_ship * ws_quantity
> ELSE 0
> END)  AS oct_net,
> Sum(CASE
> WHEN d_moy = 11 THEN ws_net_paid_inc_ship * ws_quantity
> ELSE 0
> END)  AS nov_net,
> Sum(CASE
> WHEN d_moy = 12 THEN ws_net_paid_inc_ship * ws_quantity
> ELSE 0
> END)  AS dec_net
> FROM   web_sales,
> warehouse,
> date_dim,
> time_dim,
> ship_mode
> WHERE  ws_warehouse_sk = w_warehouse_sk
> AND ws_sold_date_sk = d_date_sk
> AND ws_sold_time_sk = t_time_sk
> AND ws_ship_mode_sk = sm_ship_mode_sk
> AND d_year = 1998
> AND t_time BETWEEN 7249 AND 7249 + 28800
> AND sm_carrier IN ( 'ZOUROS', 'ZHOU' )
> GROUP  BY w_warehouse_name,
> w_warehouse_sq_ft,
> w_city,
> w_county,
> w_state,
> w_country,
> d_year
> UNION ALL
> SELECT w_warehouse_name,
> w_warehouse_sq_ft,
> w_city,
> w_county,
> w_state,
> w_country,
> 'ZOUROS'
> \|\| ','
> \|\| 'ZHOU' AS ship_carriers,
> d_year    AS year1,
> Sum(CASE
> WHEN d_moy = 1 THEN cs_ext_sales_price * cs_quantity
> ELSE 0
> END)  AS jan_sales,
> Sum(CASE
> WHEN d_moy = 2 THEN cs_ext_sales_price * cs_quantity
> ELSE 0
> END)  AS feb_sales,
> Sum(CASE
> WHEN d_moy = 3 THEN cs_ext_sales_price * cs_quantity
> ELSE 0
> END)  AS mar_sales,
> Sum(CASE
> WHEN d_moy = 4 THEN cs_ext_sales_price * cs_quantity
> ELSE 0
> END)  AS apr_sales,
> Sum(CASE
> WHEN d_moy = 5 THEN cs_ext_sales_price * cs_quantity
> ELSE 0
> END)  AS may_sales,
> Sum(CASE
> WHEN d_moy = 6 THEN cs_ext_sales_price * cs_quantity
> ELSE 0
> END)  AS jun_sales,
> Sum(CASE
> WHEN d_moy = 7 THEN cs_ext_sales_price * cs_quantity
> ELSE 0
> END)  AS jul_sales,
> Sum(CASE
> WHEN d_moy = 8 THEN cs_ext_sales_price * cs_quantity
> ELSE 0
> END)  AS aug_sales,
> Sum(CASE
> WHEN d_moy = 9 THEN cs_ext_sales_price * cs_quantity
> ELSE 0
> END)  AS sep_sales,
> Sum(CASE
> WHEN d_moy = 10 THEN cs_ext_sales_price * cs_quantity
> ELSE 0
> END)  AS oct_sales,
> Sum(CASE
> WHEN d_moy = 11 THEN cs_ext_sales_price * cs_quantity
> ELSE 0
> END)  AS nov_sales,
> Sum(CASE
> WHEN d_moy = 12 THEN cs_ext_sales_price * cs_quantity
> ELSE 0
> END)  AS dec_sales,
> Sum(CASE
> WHEN d_moy = 1 THEN cs_net_paid * cs_quantity
> ELSE 0
> END)  AS jan_net,
> Sum(CASE
> WHEN d_moy = 2 THEN cs_net_paid * cs_quantity
> ELSE 0
> END)  AS feb_net,
> Sum(CASE
> WHEN d_moy = 3 THEN cs_net_paid * cs_quantity
> ELSE 0
> END)  AS mar_net,
> Sum(CASE
> WHEN d_moy = 4 THEN cs_net_paid * cs_quantity
> ELSE 0
> END)  AS apr_net,
> Sum(CASE
> WHEN d_moy = 5 THEN cs_net_paid * cs_quantity
> ELSE 0
> END)  AS may_net,
> Sum(CASE
> WHEN d_moy = 6 THEN cs_net_paid * cs_quantity
> ELSE 0
> END)  AS jun_net,
> Sum(CASE
> WHEN d_moy = 7 THEN cs_net_paid * cs_quantity
> ELSE 0
> END)  AS jul_net,
> Sum(CASE
> WHEN d_moy = 8 THEN cs_net_paid * cs_quantity
> ELSE 0
> END)  AS aug_net,
> Sum(CASE
> WHEN d_moy = 9 THEN cs_net_paid * cs_quantity
> ELSE 0
> END)  AS sep_net,
> Sum(CASE
> WHEN d_moy = 10 THEN cs_net_paid * cs_quantity
> ELSE 0
> END)  AS oct_net,
> Sum(CASE
> WHEN d_moy = 11 THEN cs_net_paid * cs_quantity
> ELSE 0
> END)  AS nov_net,
> Sum(CASE
> WHEN d_moy = 12 THEN cs_net_paid * cs_quantity
> ELSE 0
> END)  AS dec_net
> FROM   catalog_sales,
> warehouse,
> date_dim,
> time_dim,
> ship_mode
> WHERE  cs_warehouse_sk = w_warehouse_sk
> AND cs_sold_date_sk = d_date_sk
> AND cs_sold_time_sk = t_time_sk
> AND cs_ship_mode_sk = sm_ship_mode_sk
> AND d_year = 1998
> AND t_time BETWEEN 7249 AND 7249 + 28800
> AND sm_carrier IN ( 'ZOUROS', 'ZHOU' )
> GROUP  BY w_warehouse_name,
> w_warehouse_sq_ft,
> w_city,
> w_county,
> w_state,
> w_country,
> d_year) x
> GROUP  BY w_warehouse_name,
> w_warehouse_sq_ft,
> w_city,
> w_county,
> w_state,
> w_country,
> ship_carriers,
> year1
> ORDER  BY w_warehouse_name
> LIMIT 100;
> Here is the error message with stack trace:
> java.sql.SQLException: RESOURCE ERROR: One or more nodes ran out of memory 
> while executing the query.
> AGGR OOM at First Phase. Partitions: 1. Estimated batch size: 31260672. 
> values size: 25165824. Output alloc size: 25165824. Planned batches: 1 Memory 
> limit: 2302755 so far allocated: 262144. 
> Fragment 6:1
> [Error Id: 660fd3f9-bb90-4245-b63c-208fc37c0199 on atsqa6c82.qa.lab:31010]
>   (org.apache.drill.exec.exception.OutOfMemoryException) AGGR OOM at First 
> Phase. Partitions: 1. Estimated batch size: 31260672. values size: 25165824. 
> Output alloc size: 25165824. Planned batches: 1 Memory limit: 2302755 so far 
> allocated: 262144. 
>     
> org.apache.drill.exec.test.generated.HashAggregatorGen15454.spillIfNeeded():1468
>     org.apache.drill.exec.test.generated.HashAggregatorGen15454.doSpill():1430
>     
> org.apache.drill.exec.test.generated.HashAggregatorGen15454.checkGroupAndAggrValues():1353
>     org.apache.drill.exec.test.generated.HashAggregatorGen15454.doWork():587
>     org.apache.drill.exec.physical.impl.aggregate.HashAggBatch.innerNext():184
>     org.apache.drill.exec.record.AbstractRecordBatch.next():172
>     org.apache.drill.exec.record.AbstractRecordBatch.next():119
>     org.apache.drill.exec.record.AbstractRecordBatch.next():109
>     org.apache.drill.exec.record.AbstractUnaryRecordBatch.innerNext():63
>     
> org.apache.drill.exec.physical.impl.project.ProjectRecordBatch.innerNext():147
>     org.apache.drill.exec.record.AbstractRecordBatch.next():172
>     org.apache.drill.exec.physical.impl.BaseRootExec.next():103
>     
> org.apache.drill.exec.physical.impl.SingleSenderCreator$SingleSenderRootExec.innerNext():93
>     org.apache.drill.exec.physical.impl.BaseRootExec.next():93
>     org.apache.drill.exec.work.fragment.FragmentExecutor$1.run():294
>     org.apache.drill.exec.work.fragment.FragmentExecutor$1.run():281
>     java.security.AccessController.doPrivileged():-2
>     javax.security.auth.Subject.doAs():422
>     org.apache.hadoop.security.UserGroupInformation.doAs():1595
>     org.apache.drill.exec.work.fragment.FragmentExecutor.run():281
>     org.apache.drill.common.SelfCleaningRunnable.run():38
>     java.util.concurrent.ThreadPoolExecutor.runWorker():1149
>     java.util.concurrent.ThreadPoolExecutor$Worker.run():624
>     java.lang.Thread.run():748
>       at 
> org.apache.drill.jdbc.impl.DrillCursor.nextRowInternally(DrillCursor.java:528)
>       at org.apache.drill.jdbc.impl.DrillCursor.next(DrillCursor.java:632)
>       at 
> oadd.org.apache.calcite.avatica.AvaticaResultSet.next(AvaticaResultSet.java:207)
>       at 
> org.apache.drill.jdbc.impl.DrillResultSetImpl.next(DrillResultSetImpl.java:153)
>       at 
> org.apache.drill.test.framework.DrillTestJdbc.executeQuery(DrillTestJdbc.java:253)
>       at 
> org.apache.drill.test.framework.DrillTestJdbc.run(DrillTestJdbc.java:115)
>       at 
> java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
>       at java.util.concurrent.FutureTask.run(FutureTask.java:266)
>       at 
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
>       at 
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
>       at java.lang.Thread.run(Thread.java:748)
> Caused by: oadd.org.apache.drill.common.exceptions.UserRemoteException: 
> RESOURCE ERROR: One or more nodes ran out of memory while executing the query.
> AGGR OOM at First Phase. Partitions: 1. Estimated batch size: 31260672. 
> values size: 25165824. Output alloc size: 25165824. Planned batches: 1 Memory 
> limit: 2302755 so far allocated: 262144. 
> Fragment 6:1
> [Error Id: 660fd3f9-bb90-4245-b63c-208fc37c0199 on atsqa6c82.qa.lab:31010]
>   (org.apache.drill.exec.exception.OutOfMemoryException) AGGR OOM at First 
> Phase. Partitions: 1. Estimated batch size: 31260672. values size: 25165824. 
> Output alloc size: 25165824. Planned batches: 1 Memory limit: 2302755 so far 
> allocated: 262144. 
>     
> org.apache.drill.exec.test.generated.HashAggregatorGen15454.spillIfNeeded():1468
>     org.apache.drill.exec.test.generated.HashAggregatorGen15454.doSpill():1430
>     
> org.apache.drill.exec.test.generated.HashAggregatorGen15454.checkGroupAndAggrValues():1353
>     org.apache.drill.exec.test.generated.HashAggregatorGen15454.doWork():587
>     org.apache.drill.exec.physical.impl.aggregate.HashAggBatch.innerNext():184
>     org.apache.drill.exec.record.AbstractRecordBatch.next():172
>     org.apache.drill.exec.record.AbstractRecordBatch.next():119
>     org.apache.drill.exec.record.AbstractRecordBatch.next():109
>     org.apache.drill.exec.record.AbstractUnaryRecordBatch.innerNext():63
>     
> org.apache.drill.exec.physical.impl.project.ProjectRecordBatch.innerNext():147
>     org.apache.drill.exec.record.AbstractRecordBatch.next():172
>     org.apache.drill.exec.physical.impl.BaseRootExec.next():103
>     
> org.apache.drill.exec.physical.impl.SingleSenderCreator$SingleSenderRootExec.innerNext():93
>     org.apache.drill.exec.physical.impl.BaseRootExec.next():93
>     org.apache.drill.exec.work.fragment.FragmentExecutor$1.run():294
>     org.apache.drill.exec.work.fragment.FragmentExecutor$1.run():281
>     java.security.AccessController.doPrivileged():-2
>     javax.security.auth.Subject.doAs():422
>     org.apache.hadoop.security.UserGroupInformation.doAs():1595
>     org.apache.drill.exec.work.fragment.FragmentExecutor.run():281
>     org.apache.drill.common.SelfCleaningRunnable.run():38
>     java.util.concurrent.ThreadPoolExecutor.runWorker():1149
>     java.util.concurrent.ThreadPoolExecutor$Worker.run():624
>     java.lang.Thread.run():748
>       at 
> oadd.org.apache.drill.exec.rpc.user.QueryResultHandler.resultArrived(QueryResultHandler.java:123)
>       at 
> oadd.org.apache.drill.exec.rpc.user.UserClient.handle(UserClient.java:422)
>       at 
> oadd.org.apache.drill.exec.rpc.user.UserClient.handle(UserClient.java:96)
>       at 
> oadd.org.apache.drill.exec.rpc.RpcBus$InboundHandler.decode(RpcBus.java:274)
>       at 
> oadd.org.apache.drill.exec.rpc.RpcBus$InboundHandler.decode(RpcBus.java:244)
>       at 
> oadd.io.netty.handler.codec.MessageToMessageDecoder.channelRead(MessageToMessageDecoder.java:88)
>       at 
> oadd.io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:356)
>       at 
> oadd.io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:342)
>       at 
> oadd.io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:335)
>       at 
> oadd.io.netty.handler.timeout.IdleStateHandler.channelRead(IdleStateHandler.java:287)
>       at 
> oadd.io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:356)
>       at 
> oadd.io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:342)
>       at 
> oadd.io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:335)
>       at 
> oadd.io.netty.handler.codec.MessageToMessageDecoder.channelRead(MessageToMessageDecoder.java:102)
>       at 
> oadd.io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:356)
>       at 
> oadd.io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:342)
>       at 
> oadd.io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:335)
>       at 
> oadd.io.netty.handler.codec.ByteToMessageDecoder.fireChannelRead(ByteToMessageDecoder.java:312)
>       at 
> oadd.io.netty.handler.codec.ByteToMessageDecoder.channelRead(ByteToMessageDecoder.java:286)
>       at 
> oadd.io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:356)
>       at 
> oadd.io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:342)
>       at 
> oadd.io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:335)
>       at 
> oadd.io.netty.channel.ChannelInboundHandlerAdapter.channelRead(ChannelInboundHandlerAdapter.java:86)
>       at 
> oadd.io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:356)
>       at 
> oadd.io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:342)
>       at 
> oadd.io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:335)
>       at 
> oadd.io.netty.channel.DefaultChannelPipeline$HeadContext.channelRead(DefaultChannelPipeline.java:1294)
>       at 
> oadd.io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:356)
>       at 
> oadd.io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:342)
>       at 
> oadd.io.netty.channel.DefaultChannelPipeline.fireChannelRead(DefaultChannelPipeline.java:911)
>       at 
> oadd.io.netty.channel.nio.AbstractNioByteChannel$NioByteUnsafe.read(AbstractNioByteChannel.java:131)
>       at 
> oadd.io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:645)
>       at 
> oadd.io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:580)
>       at 
> oadd.io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:497)
>       at oadd.io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:459)
>       at 
> oadd.io.netty.util.concurrent.SingleThreadEventExecutor$2.run(SingleThreadEventExecutor.java:131)
>       ... 1 more
> Here is the commit id:
> 1.14.0-SNAPSHOT 140d09e69b65ac2cb1bed09a37fa5861d39a99b3        DRILL-6539: 
> Record count not set for this vector container error        28.06.2018 @ 
> 16:13:20 PDT       Unknown 28.06.2018 @ 16:21:42 PDT



--
This message was sent by Atlassian JIRA
(v7.6.3#76005)

Reply via email to