[ 
https://issues.apache.org/jira/browse/DRILL-786?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16653105#comment-16653105
 ] 

ASF GitHub Bot commented on DRILL-786:
--------------------------------------

amansinha100 commented on issue #1488: DRILL-786: Allow CROSS JOIN syntax
URL: https://github.com/apache/drill/pull/1488#issuecomment-430517349
 
 
   The formatting of the message is still incorrect. Also, I ran some test 
queries and found an issue.  After I set the `enable_nljoin_for_scalar_only` 
flag to false and set the `slice_target` to a small number (to simulate joining 
slightly bigger tables),  the cross join planning still fails.  This could be a 
pre-existing issue but since now we are explicitly supporting cross join, can 
you check why the query fails.   
   
   0: jdbc:drill:zk=local> alter session set 
`planner.enable_nljoin_for_scalar_only` = false;
   +-------+-------------------------------------------------+
   |  ok   |                     summary                     |
   +-------+-------------------------------------------------+
   | true  | planner.enable_nljoin_for_scalar_only updated.  |
   +-------+-------------------------------------------------+
   
   0: jdbc:drill:zk=local> alter session set `planner.slice_target` = 1;
   +-------+--------------------------------+
   |  ok   |            summary             |
   +-------+--------------------------------+
   | true  | planner.slice_target updated.  |
   +-------+--------------------------------+
   
   0: jdbc:drill:zk=local> explain plan for select count(*) from 
cp.`tpch/nation.parquet` cross join cp.`tpch/region.parquet`;
   
   Error: UNSUPPORTED_OPERATION ERROR: This query cannot be planned possibly 
due to either a cartesian join or an inequality join. If a cartesian or 
inequality join is used intentionally, set the option 
'planner.enable_nljoin_for_scalar_only' to false and try again.
   
   

----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on GitHub and use the
URL above to go to the specific comment.
 
For queries about this service, please contact Infrastructure at:
[email protected]


> Implement CROSS JOIN
> --------------------
>
>                 Key: DRILL-786
>                 URL: https://issues.apache.org/jira/browse/DRILL-786
>             Project: Apache Drill
>          Issue Type: New Feature
>          Components: Query Planning & Optimization
>    Affects Versions: 1.14.0
>            Reporter: Krystal
>            Assignee: Igor Guzenko
>            Priority: Major
>              Labels: ready-to-commit
>             Fix For: 1.15.0
>
>
> git.commit.id.abbrev=5d7e3d3
> 0: jdbc:drill:schema=dfs> select student.name, student.age, 
> student.studentnum from student cross join voter where student.age = 20 and 
> voter.age = 20;
> Query failed: org.apache.drill.exec.rpc.RpcException: Remote failure while 
> running query.[error_id: "af90e65a-c4d7-4635-a436-bbc1444c8db2"
> Root: rel#318:Subset#28.PHYSICAL.SINGLETON([]).[]
> Original rel:
> AbstractConverter(subset=[rel#318:Subset#28.PHYSICAL.SINGLETON([]).[]], 
> convention=[PHYSICAL], DrillDistributionTraitDef=[SINGLETON([])], sort=[[]]): 
> rowcount = 22500.0, cumulative cost = {inf}, id = 320
>   DrillScreenRel(subset=[rel#317:Subset#28.LOGICAL.ANY([]).[]]): rowcount = 
> 22500.0, cumulative cost = {2250.0 rows, 2250.0 cpu, 0.0 io, 0.0 network}, id 
> = 316
>     DrillProjectRel(subset=[rel#315:Subset#27.LOGICAL.ANY([]).[]], name=[$2], 
> age=[$1], studentnum=[$3]): rowcount = 22500.0, cumulative cost = {22500.0 
> rows, 12.0 cpu, 0.0 io, 0.0 network}, id = 314
>       DrillJoinRel(subset=[rel#313:Subset#26.LOGICAL.ANY([]).[]], 
> condition=[true], joinType=[inner]): rowcount = 22500.0, cumulative cost = 
> {22500.0 rows, 0.0 cpu, 0.0 io, 0.0 network}, id = 312
>         DrillFilterRel(subset=[rel#308:Subset#23.LOGICAL.ANY([]).[]], 
> condition=[=(CAST($1):INTEGER, 20)]): rowcount = 150.0, cumulative cost = 
> {1000.0 rows, 4000.0 cpu, 0.0 io, 0.0 network}, id = 307
>           DrillScanRel(subset=[rel#306:Subset#22.LOGICAL.ANY([]).[]], 
> table=[[dfs, student]]): rowcount = 1000.0, cumulative cost = {1000.0 rows, 
> 4000.0 cpu, 0.0 io, 0.0 network}, id = 129
>         DrillFilterRel(subset=[rel#311:Subset#25.LOGICAL.ANY([]).[]], 
> condition=[=(CAST($1):INTEGER, 20)]): rowcount = 150.0, cumulative cost = 
> {1000.0 rows, 4000.0 cpu, 0.0 io, 0.0 network}, id = 310
>           DrillScanRel(subset=[rel#309:Subset#24.LOGICAL.ANY([]).[]], 
> table=[[dfs, voter]]): rowcount = 1000.0, cumulative cost = {1000.0 rows, 
> 2000.0 cpu, 0.0 io, 0.0 network}, id = 140
> Stack trace:
> org.eigenbase.relopt.RelOptPlanner$CannotPlanException: Node 
> [rel#318:Subset#28.PHYSICAL.SINGLETON([]).[]] could not be implemented; 
> planner state:
> Root: rel#318:Subset#28.PHYSICAL.SINGLETON([]).[]
> Original rel:
> AbstractConverter(subset=[rel#318:Subset#28.PHYSICAL.SINGLETON([]).[]], 
> convention=[PHYSICAL], DrillDistributionTraitDef=[SINGLETON([])], sort=[[]]): 
> rowcount = 22500.0, cumulative cost = {inf}, id = 320
>   DrillScreenRel(subset=[rel#317:Subset#28.LOGICAL.ANY([]).[]]): rowcount = 
> 22500.0, cumulative cost = {2250.0 rows, 2250.0 cpu, 0.0 io, 0.0 network}, id 
> = 316
>     DrillProjectRel(subset=[rel#315:Subset#27.LOGICAL.ANY([]).[]], name=[$2], 
> age=[$1], studentnum=[$3]): rowcount = 22500.0, cumulative cost = {22500.0 
> rows, 12.0 cpu, 0.0 io, 0.0 network}, id = 314
>       DrillJoinRel(subset=[rel#313:Subset#26.LOGICAL.ANY([]).[]], 
> condition=[true], joinType=[inner]): rowcount = 22500.0, cumulative cost = 
> {22500.0 rows, 0.0 cpu, 0.0 io, 0.0 network}, id = 312
>         DrillFilterRel(subset=[rel#308:Subset#23.LOGICAL.ANY([]).[]], 
> condition=[=(CAST($1):INTEGER, 20)]): rowcount = 150.0, cumulative cost = 
> {1000.0 rows, 4000.0 cpu, 0.0 io, 0.0 network}, id = 307
>           DrillScanRel(subset=[rel#306:Subset#22.LOGICAL.ANY([]).[]], 
> table=[[dfs, student]]): rowcount = 1000.0, cumulative cost = {1000.0 rows, 
> 4000.0 cpu, 0.0 io, 0.0 network}, id = 129
>         DrillFilterRel(subset=[rel#311:Subset#25.LOGICAL.ANY([]).[]], 
> condition=[=(CAST($1):INTEGER, 20)]): rowcount = 150.0, cumulative cost = 
> {1000.0 rows, 4000.0 cpu, 0.0 io, 0.0 network}, id = 310
>           DrillScanRel(subset=[rel#309:Subset#24.LOGICAL.ANY([]).[]], 
> table=[[dfs, voter]]): rowcount = 1000.0, cumulative cost = {1000.0 rows, 
> 2000.0 cpu, 0.0 io, 0.0 network}, id = 140
> Sets:
> Set#22, type: (DrillRecordRow[*, age, name, studentnum])
> rel#306:Subset#22.LOGICAL.ANY([]).[], best=rel#129, 
> importance=0.5904900000000001
> rel#129:DrillScanRel.LOGICAL.ANY([]).[](table=[dfs, student]), 
> rowcount=1000.0, cumulative cost={1000.0 rows, 4000.0 cpu, 0.0 io, 0.0 
> network}
> rel#333:AbstractConverter.LOGICAL.ANY([]).[](child=rel#332:Subset#22.PHYSICAL.ANY([]).[],convention=LOGICAL,DrillDistributionTraitDef=ANY([]),sort=[]),
>  rowcount=1000.0, cumulative cost={inf}
> rel#337:AbstractConverter.LOGICAL.ANY([]).[](child=rel#336:Subset#22.PHYSICAL.SINGLETON([]).[],convention=LOGICAL,DrillDistributionTraitDef=ANY([]),sort=[]),
>  rowcount=1000.0, cumulative cost={inf}
> rel#332:Subset#22.PHYSICAL.ANY([]).[], best=rel#335, importance=0.531441
> rel#334:AbstractConverter.PHYSICAL.ANY([]).[](child=rel#306:Subset#22.LOGICAL.ANY([]).[],convention=PHYSICAL,DrillDistributionTraitDef=ANY([]),sort=[]),
>  rowcount=1000.0, cumulative cost={inf}
> rel#338:AbstractConverter.PHYSICAL.ANY([]).[](child=rel#336:Subset#22.PHYSICAL.SINGLETON([]).[],convention=PHYSICAL,DrillDistributionTraitDef=ANY([]),sort=[]),
>  rowcount=1000.0, cumulative cost={inf}
> rel#339:AbstractConverter.PHYSICAL.SINGLETON([]).[](child=rel#306:Subset#22.LOGICAL.ANY([]).[],convention=PHYSICAL,DrillDistributionTraitDef=SINGLETON([]),sort=[]),
>  rowcount=1000.0, cumulative cost={inf}
> rel#340:AbstractConverter.PHYSICAL.SINGLETON([]).[](child=rel#332:Subset#22.PHYSICAL.ANY([]).[],convention=PHYSICAL,DrillDistributionTraitDef=SINGLETON([]),sort=[]),
>  rowcount=1000.0, cumulative cost={inf}
> rel#335:ScanPrel.PHYSICAL.SINGLETON([]).[](groupscan=ParquetGroupScan 
> [entries=[ReadEntryWithPath [path=maprfs:/drill/testdata/p1tests/student]], 
> selectionRoot=/drill/testdata/p1tests/student, columns=[SchemaPath [`age`], 
> SchemaPath [`name`], SchemaPath [`studentnum`]]]), rowcount=1000.0, 
> cumulative cost={1000.0 rows, 4000.0 cpu, 0.0 io, 0.0 network}
> rel#336:Subset#22.PHYSICAL.SINGLETON([]).[], best=rel#335, 
> importance=0.4782969000000001
> rel#339:AbstractConverter.PHYSICAL.SINGLETON([]).[](child=rel#306:Subset#22.LOGICAL.ANY([]).[],convention=PHYSICAL,DrillDistributionTraitDef=SINGLETON([]),sort=[]),
>  rowcount=1000.0, cumulative cost={inf}
> rel#340:AbstractConverter.PHYSICAL.SINGLETON([]).[](child=rel#332:Subset#22.PHYSICAL.ANY([]).[],convention=PHYSICAL,DrillDistributionTraitDef=SINGLETON([]),sort=[]),
>  rowcount=1000.0, cumulative cost={inf}
> rel#335:ScanPrel.PHYSICAL.SINGLETON([]).[](groupscan=ParquetGroupScan 
> [entries=[ReadEntryWithPath [path=maprfs:/drill/testdata/p1tests/student]], 
> selectionRoot=/drill/testdata/p1tests/student, columns=[SchemaPath [`age`], 
> SchemaPath [`name`], SchemaPath [`studentnum`]]]), rowcount=1000.0, 
> cumulative cost={1000.0 rows, 4000.0 cpu, 0.0 io, 0.0 network}
> Set#23, type: (DrillRecordRow[*, age, name, studentnum])
> rel#308:Subset#23.LOGICAL.ANY([]).[], best=rel#307, importance=0.6561
> rel#307:DrillFilterRel.LOGICAL.ANY([]).[](child=rel#306:Subset#22.LOGICAL.ANY([]).[],condition==(CAST($1):INTEGER,
>  20)), rowcount=150.0, cumulative cost={2000.0 rows, 8000.0 cpu, 0.0 io, 0.0 
> network}
> rel#343:AbstractConverter.LOGICAL.ANY([]).[](child=rel#342:Subset#23.PHYSICAL.SINGLETON([]).[],convention=LOGICAL,DrillDistributionTraitDef=ANY([]),sort=[]),
>  rowcount=150.0, cumulative cost={inf}
> rel#342:Subset#23.PHYSICAL.SINGLETON([]).[], best=rel#341, 
> importance=0.5904900000000001
> rel#344:AbstractConverter.PHYSICAL.SINGLETON([]).[](child=rel#308:Subset#23.LOGICAL.ANY([]).[],convention=PHYSICAL,DrillDistributionTraitDef=SINGLETON([]),sort=[]),
>  rowcount=150.0, cumulative cost={inf}
> rel#341:FilterPrel.PHYSICAL.SINGLETON([]).[](child=rel#332:Subset#22.PHYSICAL.ANY([]).[],condition==(CAST($1):INTEGER,
>  20)), rowcount=150.0, cumulative cost={2000.0 rows, 8000.0 cpu, 0.0 io, 0.0 
> network}
> Set#24, type: (DrillRecordRow[*, age])
> rel#309:Subset#24.LOGICAL.ANY([]).[], best=rel#140, 
> importance=0.5904900000000001
> rel#140:DrillScanRel.LOGICAL.ANY([]).[](table=[dfs, voter]), rowcount=1000.0, 
> cumulative cost={1000.0 rows, 2000.0 cpu, 0.0 io, 0.0 network}
> rel#330:AbstractConverter.LOGICAL.ANY([]).[](child=rel#329:Subset#24.PHYSICAL.ANY([]).[],convention=LOGICAL,DrillDistributionTraitDef=ANY([]),sort=[]),
>  rowcount=1000.0, cumulative cost={inf}
> rel#349:AbstractConverter.LOGICAL.ANY([]).[](child=rel#348:Subset#24.PHYSICAL.SINGLETON([]).[],convention=LOGICAL,DrillDistributionTraitDef=ANY([]),sort=[]),
>  rowcount=1000.0, cumulative cost={inf}
> rel#329:Subset#24.PHYSICAL.ANY([]).[], best=rel#347, importance=0.531441
> rel#331:AbstractConverter.PHYSICAL.ANY([]).[](child=rel#309:Subset#24.LOGICAL.ANY([]).[],convention=PHYSICAL,DrillDistributionTraitDef=ANY([]),sort=[]),
>  rowcount=1000.0, cumulative cost={inf}
> rel#350:AbstractConverter.PHYSICAL.ANY([]).[](child=rel#348:Subset#24.PHYSICAL.SINGLETON([]).[],convention=PHYSICAL,DrillDistributionTraitDef=ANY([]),sort=[]),
>  rowcount=1000.0, cumulative cost={inf}
> rel#351:AbstractConverter.PHYSICAL.SINGLETON([]).[](child=rel#309:Subset#24.LOGICAL.ANY([]).[],convention=PHYSICAL,DrillDistributionTraitDef=SINGLETON([]),sort=[]),
>  rowcount=1000.0, cumulative cost={inf}
> rel#352:AbstractConverter.PHYSICAL.SINGLETON([]).[](child=rel#329:Subset#24.PHYSICAL.ANY([]).[],convention=PHYSICAL,DrillDistributionTraitDef=SINGLETON([]),sort=[]),
>  rowcount=1000.0, cumulative cost={inf}
> rel#347:ScanPrel.PHYSICAL.SINGLETON([]).[](groupscan=ParquetGroupScan 
> [entries=[ReadEntryWithPath [path=maprfs:/drill/testdata/p1tests/voter]], 
> selectionRoot=/drill/testdata/p1tests/voter, columns=[SchemaPath [`age`]]]), 
> rowcount=1000.0, cumulative cost={1000.0 rows, 2000.0 cpu, 0.0 io, 0.0 
> network}
> rel#348:Subset#24.PHYSICAL.SINGLETON([]).[], best=rel#347, 
> importance=0.4782969000000001
> rel#351:AbstractConverter.PHYSICAL.SINGLETON([]).[](child=rel#309:Subset#24.LOGICAL.ANY([]).[],convention=PHYSICAL,DrillDistributionTraitDef=SINGLETON([]),sort=[]),
>  rowcount=1000.0, cumulative cost={inf}
> rel#352:AbstractConverter.PHYSICAL.SINGLETON([]).[](child=rel#329:Subset#24.PHYSICAL.ANY([]).[],convention=PHYSICAL,DrillDistributionTraitDef=SINGLETON([]),sort=[]),
>  rowcount=1000.0, cumulative cost={inf}
> rel#347:ScanPrel.PHYSICAL.SINGLETON([]).[](groupscan=ParquetGroupScan 
> [entries=[ReadEntryWithPath [path=maprfs:/drill/testdata/p1tests/voter]], 
> selectionRoot=/drill/testdata/p1tests/voter, columns=[SchemaPath [`age`]]]), 
> rowcount=1000.0, cumulative cost={1000.0 rows, 2000.0 cpu, 0.0 io, 0.0 
> network}
> Set#25, type: (DrillRecordRow[*, age])
> rel#311:Subset#25.LOGICAL.ANY([]).[], best=rel#310, importance=0.6561
> rel#310:DrillFilterRel.LOGICAL.ANY([]).[](child=rel#309:Subset#24.LOGICAL.ANY([]).[],condition==(CAST($1):INTEGER,
>  20)), rowcount=150.0, cumulative cost={2000.0 rows, 6000.0 cpu, 0.0 io, 0.0 
> network}
> rel#355:AbstractConverter.LOGICAL.ANY([]).[](child=rel#354:Subset#25.PHYSICAL.SINGLETON([]).[],convention=LOGICAL,DrillDistributionTraitDef=ANY([]),sort=[]),
>  rowcount=150.0, cumulative cost={inf}
> rel#354:Subset#25.PHYSICAL.SINGLETON([]).[], best=rel#353, 
> importance=0.5904900000000001
> rel#356:AbstractConverter.PHYSICAL.SINGLETON([]).[](child=rel#311:Subset#25.LOGICAL.ANY([]).[],convention=PHYSICAL,DrillDistributionTraitDef=SINGLETON([]),sort=[]),
>  rowcount=150.0, cumulative cost={inf}
> rel#353:FilterPrel.PHYSICAL.SINGLETON([]).[](child=rel#329:Subset#24.PHYSICAL.ANY([]).[],condition==(CAST($1):INTEGER,
>  20)), rowcount=150.0, cumulative cost={2000.0 rows, 6000.0 cpu, 0.0 io, 0.0 
> network}
> Set#26, type: RecordType(ANY *, ANY age, ANY name, ANY studentnum, ANY *0, 
> ANY age0)
> rel#313:Subset#26.LOGICAL.ANY([]).[], best=rel#312, 
> importance=0.7290000000000001
> rel#312:DrillJoinRel.LOGICAL.ANY([]).[](left=rel#308:Subset#23.LOGICAL.ANY([]).[],right=rel#311:Subset#25.LOGICAL.ANY([]).[],condition=true,joinType=inner),
>  rowcount=22500.0, cumulative cost={4001.0 rows, 14001.0 cpu, 0.0 io, 0.0 
> network}
> rel#327:AbstractConverter.LOGICAL.ANY([]).[](child=rel#326:Subset#26.PHYSICAL.ANY([]).[],convention=LOGICAL,DrillDistributionTraitDef=ANY([]),sort=[]),
>  rowcount=1.7976931348623157E308, cumulative cost={inf}
> rel#326:Subset#26.PHYSICAL.ANY([]).[], best=null, importance=0.6561
> rel#328:AbstractConverter.PHYSICAL.ANY([]).[](child=rel#313:Subset#26.LOGICAL.ANY([]).[],convention=PHYSICAL,DrillDistributionTraitDef=ANY([]),sort=[]),
>  rowcount=22500.0, cumulative cost={inf}
> Set#27, type: RecordType(ANY name, ANY age, ANY studentnum)
> rel#315:Subset#27.LOGICAL.ANY([]).[], best=rel#314, importance=0.81
> rel#314:DrillProjectRel.LOGICAL.ANY([]).[](child=rel#313:Subset#26.LOGICAL.ANY([]).[],name=$2,age=$1,studentnum=$3),
>  rowcount=22500.0, cumulative cost={26501.0 rows, 14013.0 cpu, 0.0 io, 0.0 
> network}
> rel#322:AbstractConverter.LOGICAL.ANY([]).[](child=rel#321:Subset#27.PHYSICAL.SINGLETON([]).[],convention=LOGICAL,DrillDistributionTraitDef=ANY([]),sort=[]),
>  rowcount=1.7976931348623157E308, cumulative cost={inf}
> rel#321:Subset#27.PHYSICAL.SINGLETON([]).[], best=null, 
> importance=0.7290000000000001
> rel#323:AbstractConverter.PHYSICAL.SINGLETON([]).[](child=rel#315:Subset#27.LOGICAL.ANY([]).[],convention=PHYSICAL,DrillDistributionTraitDef=SINGLETON([]),sort=[]),
>  rowcount=22500.0, cumulative cost={inf}
> Set#28, type: RecordType(ANY name, ANY age, ANY studentnum)
> rel#317:Subset#28.LOGICAL.ANY([]).[], best=rel#316, importance=0.9
> rel#316:DrillScreenRel.LOGICAL.ANY([]).[](child=rel#315:Subset#27.LOGICAL.ANY([]).[]),
>  rowcount=22500.0, cumulative cost={28751.0 rows, 16263.0 cpu, 0.0 io, 0.0 
> network}
> rel#319:AbstractConverter.LOGICAL.ANY([]).[](child=rel#318:Subset#28.PHYSICAL.SINGLETON([]).[],convention=LOGICAL,DrillDistributionTraitDef=ANY([]),sort=[]),
>  rowcount=1.7976931348623157E308, cumulative cost={inf}
> rel#318:Subset#28.PHYSICAL.SINGLETON([]).[], best=null, importance=1.0
> rel#320:AbstractConverter.PHYSICAL.SINGLETON([]).[](child=rel#317:Subset#28.LOGICAL.ANY([]).[],convention=PHYSICAL,DrillDistributionTraitDef=SINGLETON([]),sort=[]),
>  rowcount=22500.0, cumulative cost={inf}
> rel#324:ScreenPrel.PHYSICAL.SINGLETON([]).[](child=rel#321:Subset#27.PHYSICAL.SINGLETON([]).[]),
>  rowcount=1.7976931348623157E308, cumulative cost={inf}
> org.eigenbase.relopt.volcano.RelSubset$CheapestPlanReplacer.visit(RelSubset.java:445)
>  ~[optiq-core-0.7-20140513.013236-5.jar:na]
> org.eigenbase.relopt.volcano.RelSubset.buildCheapestPlan(RelSubset.java:287) 
> ~[optiq-core-0.7-20140513.013236-5.jar:na]
> org.eigenbase.relopt.volcano.VolcanoPlanner.findBestExp(VolcanoPlanner.java:669)
>  ~[optiq-core-0.7-20140513.013236-5.jar:na]
> net.hydromatic.optiq.prepare.PlannerImpl.transform(PlannerImpl.java:271) 
> ~[optiq-core-0.7-20140513.013236-5.jar:na]
> org.apache.drill.exec.planner.sql.handlers.DefaultSqlHandler.convertToPrel(DefaultSqlHandler.java:119)
>  
> ~[drill-java-exec-1.0.0-m2-incubating-SNAPSHOT-rebuffed.jar:1.0.0-m2-incubating-SNAPSHOT]
> org.apache.drill.exec.planner.sql.handlers.DefaultSqlHandler.getPlan(DefaultSqlHandler.java:89)
>  
> ~[drill-java-exec-1.0.0-m2-incubating-SNAPSHOT-rebuffed.jar:1.0.0-m2-incubating-SNAPSHOT]
> org.apache.drill.exec.planner.sql.DrillSqlWorker.getPlan(DrillSqlWorker.java:134)
>  
> ~[drill-java-exec-1.0.0-m2-incubating-SNAPSHOT-rebuffed.jar:1.0.0-m2-incubating-SNAPSHOT]
> org.apache.drill.exec.work.foreman.Foreman.runSQL(Foreman.java:338) 
> [drill-java-exec-1.0.0-m2-incubating-SNAPSHOT-rebuffed.jar:1.0.0-m2-incubating-SNAPSHOT]
> org.apache.drill.exec.work.foreman.Foreman.run(Foreman.java:186) 
> [drill-java-exec-1.0.0-m2-incubating-SNAPSHOT-rebuffed.jar:1.0.0-m2-incubating-SNAPSHOT]
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
>  [na:1.7.0_45]
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
>  [na:1.7.0_45]
> java.lang.Thread.run(Thread.java:744) [na:1.7.0_45]



--
This message was sent by Atlassian JIRA
(v7.6.3#76005)

Reply via email to