JingsongLi commented on a change in pull request #11127: [FLINK-16081][docs] 
Translate /dev/table/index.zh.md
URL: https://github.com/apache/flink/pull/11127#discussion_r382410038
 
 

 ##########
 File path: docs/dev/table/index.zh.md
 ##########
 @@ -25,41 +25,41 @@ specific language governing permissions and limitations
 under the License.
 -->
 
-Apache Flink features two relational APIs - the Table API and SQL - for 
unified stream and batch processing. The Table API is a language-integrated 
query API for Scala and Java that allows the composition of queries from 
relational operators such as selection, filter, and join in a very intuitive 
way. Flink's SQL support is based on [Apache 
Calcite](https://calcite.apache.org) which implements the SQL standard. Queries 
specified in either interface have the same semantics and specify the same 
result regardless whether the input is a batch input (DataSet) or a stream 
input (DataStream).
+Apache Flink 有两种关系型 API 来做流批统一处理:Table API 和 SQL。Table API 是集成于 Java 和 Scala 
的查询 API,它可以用一种非常直观的方式来组合使用例如选取、过滤、join 等关系型算子。Flink SQL 是基于 [Apache 
Calcite](https://calcite.apache.org) 来实现的标准 SQL。这两种 API 
中的查询对于批(DataSet)流(DataStream)的输入有相同的语义,也会产生同样的计算结果。
 
-The Table API and the SQL interfaces are tightly integrated with each other as 
well as Flink's DataStream and DataSet APIs. You can easily switch between all 
APIs and libraries which build upon the APIs. For instance, you can extract 
patterns from a DataStream using the [CEP library]({{ site.baseurl 
}}/dev/libs/cep.html) and later use the Table API to analyze the patterns, or 
you might scan, filter, and aggregate a batch table using a SQL query before 
running a [Gelly graph algorithm]({{ site.baseurl }}/dev/libs/gelly) on the 
preprocessed data.
+Table API 和 SQL 两种 API 是紧密集成的,以及 DataStream 和 DataSet API。你可以在这些 API 
之间,以及一些基于这些 API 的库之间轻松的切换。比如,你可以先用 [CEP]({{ site.baseurl 
}}/zh/dev/libs/cep.html) 从 DataStream 中做模式匹配,然后用 Table API 来分析匹配的结果;或者你可以用 SQL 
来扫描、过滤、聚合一个批式的表,然后再跑一个 [Gelly 图算法]({{ site.baseurl }}/zh/dev/libs/gelly) 
来处理已经预处理好的数据。
 
-**Please note that the Table API and SQL are not yet feature complete and are 
being actively developed. Not all operations are supported by every combination 
of \[Table API, SQL\] and \[stream, batch\] input.**
+**注意:Table API 和 SQL 现在还处于活跃开发阶段,还没有完全实现所有的特性。不是所有的 \[Table API,SQL\] 和 
\[流,批\] 的组合都是支持的。**
 
-Dependency Structure
+依赖图
 --------------------
 
-Starting from Flink 1.9, Flink provides two different planner implementations 
for evaluating Table & SQL API programs: the Blink planner and the old planner 
that was available before Flink 1.9. Planners are responsible for
-translating relational operators into an executable, optimized Flink job. Both 
of the planners come with different optimization rules and runtime classes.
-They may also differ in the set of supported features.
+从1.9开始,Flink 提供了两个 table planner 实现来执行 Table API 和 SQL 程序:Blink planner 和 old 
planner,old planner 在1.9之前就已经存在了。
+planner 的作用主要是把关系型的操作翻译成可执行的、经过优化的 Flink job。这两个 planner 所使用的优化规则以及运行时都不一样。
+它们在支持的功能上也有些诧异。
 
 Review comment:
   差异

----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
 
For queries about this service, please contact Infrastructure at:
[email protected]


With regards,
Apache Git Services

Reply via email to