klion26 commented on a change in pull request #12420:
URL: https://github.com/apache/flink/pull/12420#discussion_r434999966



##########
File path: docs/dev/table/streaming/joins.zh.md
##########
@@ -22,37 +22,35 @@ specific language governing permissions and limitations
 under the License.
 -->
 
-Joins are a common and well-understood operation in batch data processing to 
connect the rows of two relations. However, the semantics of joins on [dynamic 
tables](dynamic_tables.html) are much less obvious or even confusing.
+Join 在批数据处理中是比较常见且广为人知的运算,一般用于连接两张关系表。然而在[动态表](dynamic_tables.html)中 Join 
的语义会更难以理解甚至让人困惑。
 
-Because of that, there are a couple of ways to actually perform a join using 
either Table API or SQL.
+因而,Flink 提供了几种基于 Table API 和 SQL 的 Join 方法。
 
-For more information regarding the syntax, please check the join sections in 
[Table API](../tableApi.html#joins) and [SQL]({{ site.baseurl 
}}/dev/table/sql/queries.html#joins).
+欲获取更多关于 Join 语法的细节,请参考 [Table API](../tableApi.html#joins) 和 [SQL]({{ 
site.baseurl }}/dev/table/sql/queries.html#joins) 中的 Join 章节。
 
 * This will be replaced by the TOC
 {:toc}
 
-Regular Joins
+常规 Join
 -------------
 
-Regular joins are the most generic type of join in which any new records or 
changes to either side of the join input are visible and are affecting the 
whole join result.
-For example, if there is a new record on the left side, it will be joined with 
all of the previous and future records on the right side.
+常规 Join 是最常用的 Join 用法。在常规 Join 中,任何新记录或对 Join 两侧的表的任何更改都是可见的,并会影响最终整个 Join 
的结果。例如,如果 Join 左侧插入了一条新的记录,那么它将会与 Join 右侧过去与将来的所有记录一起合并查询。

Review comment:
       个人感觉 `一起合并查询` 这个可以再优化下意思。感觉需要更体现 “join” 的意思

##########
File path: docs/dev/table/streaming/joins.zh.md
##########
@@ -22,37 +22,35 @@ specific language governing permissions and limitations
 under the License.
 -->
 
-Joins are a common and well-understood operation in batch data processing to 
connect the rows of two relations. However, the semantics of joins on [dynamic 
tables](dynamic_tables.html) are much less obvious or even confusing.
+Join 在批数据处理中是比较常见且广为人知的运算,一般用于连接两张关系表。然而在[动态表](dynamic_tables.html)中 Join 
的语义会更难以理解甚至让人困惑。
 
-Because of that, there are a couple of ways to actually perform a join using 
either Table API or SQL.
+因而,Flink 提供了几种基于 Table API 和 SQL 的 Join 方法。
 
-For more information regarding the syntax, please check the join sections in 
[Table API](../tableApi.html#joins) and [SQL]({{ site.baseurl 
}}/dev/table/sql/queries.html#joins).
+欲获取更多关于 Join 语法的细节,请参考 [Table API](../tableApi.html#joins) 和 [SQL]({{ 
site.baseurl }}/dev/table/sql/queries.html#joins) 中的 Join 章节。

Review comment:
       ```suggestion
   欲获取更多关于 Join 语法的细节,请参考 [Table API](../tableApi.html#joins) 和 [SQL]({{ 
site.baseurl }}/zh/dev/table/sql/queries.html#joins) 中的 Join 章节。
   ```

##########
File path: docs/dev/table/streaming/joins.zh.md
##########
@@ -1,5 +1,5 @@
 ---
-title: "Joins in Continuous Queries"
+title: "流上的 Join"

Review comment:
       不确定这个翻译成 “流上的 Join” 是否合适,需要其他人 check 下

##########
File path: docs/dev/table/streaming/joins.zh.md
##########
@@ -22,37 +22,35 @@ specific language governing permissions and limitations
 under the License.
 -->
 
-Joins are a common and well-understood operation in batch data processing to 
connect the rows of two relations. However, the semantics of joins on [dynamic 
tables](dynamic_tables.html) are much less obvious or even confusing.
+Join 在批数据处理中是比较常见且广为人知的运算,一般用于连接两张关系表。然而在[动态表](dynamic_tables.html)中 Join 
的语义会更难以理解甚至让人困惑。
 
-Because of that, there are a couple of ways to actually perform a join using 
either Table API or SQL.
+因而,Flink 提供了几种基于 Table API 和 SQL 的 Join 方法。
 
-For more information regarding the syntax, please check the join sections in 
[Table API](../tableApi.html#joins) and [SQL]({{ site.baseurl 
}}/dev/table/sql/queries.html#joins).
+欲获取更多关于 Join 语法的细节,请参考 [Table API](../tableApi.html#joins) 和 [SQL]({{ 
site.baseurl }}/dev/table/sql/queries.html#joins) 中的 Join 章节。
 
 * This will be replaced by the TOC
 {:toc}
 
-Regular Joins
+常规 Join
 -------------
 
-Regular joins are the most generic type of join in which any new records or 
changes to either side of the join input are visible and are affecting the 
whole join result.
-For example, if there is a new record on the left side, it will be joined with 
all of the previous and future records on the right side.
+常规 Join 是最常用的 Join 用法。在常规 Join 中,任何新记录或对 Join 两侧的表的任何更改都是可见的,并会影响最终整个 Join 
的结果。例如,如果 Join 左侧插入了一条新的记录,那么它将会与 Join 右侧过去与将来的所有记录一起合并查询。
 
 {% highlight sql %}
 SELECT * FROM Orders
 INNER JOIN Product
 ON Orders.productId = Product.id
 {% endhighlight %}
 
-These semantics allow for any kind of updating (insert, update, delete) input 
tables.
+上述语意允许对输入表进行任意类型的更新操作(insert, update, delete)。
 
-However, this operation has an important implication: it requires to keep both 
sides of the join input in Flink's state forever.
-Thus, the resource usage will grow indefinitely as well, if one or both input 
tables are continuously growing.
+然而,常规 Join 隐含了一个重要的前提:即它需要在 Flink 的状态中永久保存 Join 两侧的数据。
+因而,如果 Join 操作中的一方或双方输入表持续增长的话,资源消耗也将会随之无限增长。
 
-Time-windowed Joins
+时间窗口 Join

Review comment:
       ”时间窗口 Join“ 会有一种没有表达完整的感觉吗?是否需要修改成诸如 “基于时间窗口的 Join”(或者其他描述) 等?
   如果修改的话,则需要整篇文章都进行修改

##########
File path: docs/dev/table/streaming/joins.zh.md
##########
@@ -22,37 +22,35 @@ specific language governing permissions and limitations
 under the License.
 -->
 
-Joins are a common and well-understood operation in batch data processing to 
connect the rows of two relations. However, the semantics of joins on [dynamic 
tables](dynamic_tables.html) are much less obvious or even confusing.
+Join 在批数据处理中是比较常见且广为人知的运算,一般用于连接两张关系表。然而在[动态表](dynamic_tables.html)中 Join 
的语义会更难以理解甚至让人困惑。
 
-Because of that, there are a couple of ways to actually perform a join using 
either Table API or SQL.
+因而,Flink 提供了几种基于 Table API 和 SQL 的 Join 方法。
 
-For more information regarding the syntax, please check the join sections in 
[Table API](../tableApi.html#joins) and [SQL]({{ site.baseurl 
}}/dev/table/sql/queries.html#joins).
+欲获取更多关于 Join 语法的细节,请参考 [Table API](../tableApi.html#joins) 和 [SQL]({{ 
site.baseurl }}/dev/table/sql/queries.html#joins) 中的 Join 章节。
 
 * This will be replaced by the TOC
 {:toc}
 
-Regular Joins
+常规 Join

Review comment:
       这里翻译的话,需要在这上面增加一个标签,否则页内跳转失效了。其他的标题也是类似
   具体参考 
[wiki](https://cwiki.apache.org/confluence/display/FLINK/Flink+Translation+Specifications)
   你可以翻译完成后,在本地执行 `./docs/build.sh -p` 然后找到翻译后的页面进行校验

##########
File path: docs/dev/table/streaming/joins.zh.md
##########
@@ -189,50 +183,42 @@ val result = orders
 </div>
 </div>
 
-**Note**: State retention defined in a [query 
configuration](query_configuration.html) is not yet implemented for temporal 
joins.
-This means that the required state to compute the query result might grow 
infinitely depending on the number of distinct primary keys for the history 
table.
+**注意**: 临时 Join中的 State 保留(在 [查询配置](query_configuration.html) 
中定义)还未实现。这意味着计算的查询结果所需的状态可能会无限增长,具体数量取决于历史记录表的不重复主键个数。
 
-### Processing-time Temporal Joins
+### 基于 Processing-time 临时 Join
 
-With a processing-time time attribute, it is impossible to pass _past_ time 
attributes as an argument to the temporal table function.
-By definition, it is always the current timestamp. Thus, invocations of a 
processing-time temporal table function will always return the latest known 
versions of the underlying table
-and any updates in the underlying history table will also immediately 
overwrite the current values.
+如果将 processing-time 作为时间属性,将无法将 _past_ 时间属性作为参数传递给临时表函数。
+根据定义,processing-time 总会是当前时间戳。因此,基于 processing-time 
的临时表函数将始终返回基础表的最新已知版本,时态表函数的调用将始终返回基础表的最新已知版本,并且基础历史表中的任何更新也将立即覆盖当前值。
 
-Only the latest versions (with respect to the defined primary key) of the 
build side records are kept in the state.
-Updates of the build side will have no effect on previously emitted join 
results.
+只有最新版本的构建侧记录(是否最新由所定义的主键所决定)会被保存在 state 中。
+构建侧的更新不会对之前 Join 的结果产生影响。
 
-One can think about a processing-time temporal join as a simple `HashMap<K, 
V>` that stores all of the records from the build side.
-When a new record from the build side has the same key as some previous 
record, the old value is just simply overwritten.
-Every record from the probe side is always evaluated against the most 
recent/current state of the `HashMap`.
+可以将 processing-time 的临时 Join 视作简单的哈希Map `HashMap <K,V>`,HashMap 中存储来自构建侧的所有记录。
+当来自构建侧的新插入的记录与旧值具有相同的 Key 时,旧值仅会被覆盖。
+探针侧的每条记录将总会根据 `HashMap` 的最新/当前状态来计算。
 
-### Event-time Temporal Joins
+### 基于 Event-time 临时 Join
 
-With an event-time time attribute (i.e., a rowtime attribute), it is possible 
to pass _past_ time attributes to the temporal table function.
-This allows for joining the two tables at a common point in time.
+将 event-time 作为时间属性时,可将 _past_ 时间属性作为参数传递给临时表函数。
+这允许对两个表中在相同时间点的记录执行 Join 操作。

Review comment:
       建议和上一行合并

##########
File path: docs/dev/table/streaming/joins.zh.md
##########
@@ -88,8 +85,8 @@ rowtime amount currency
 11:04        5 US Dollar
 {% endhighlight %}
 
-`RatesHistory` represents an ever changing append-only table of currency 
exchange rates with respect to `Yen` (which has a rate of `1`).
-For example, the exchange rate for the period from `09:00` to `10:45` of 
`Euro` to `Yen` was `114`. From `10:45` to `11:15` it was `116`.
+字段 `RatesHistory` 表示不断变化的汇率信息。汇率以日元为基准(即 `Yen` 永远为 1)。
+例如,`09:00` 到 `10:45` 间欧元对日元的汇率是 `114`,`10:45` 到 `11:15` 间为 `116`。

Review comment:
       建议和上一行合并

##########
File path: docs/dev/table/streaming/joins.zh.md
##########
@@ -189,50 +183,42 @@ val result = orders
 </div>
 </div>
 
-**Note**: State retention defined in a [query 
configuration](query_configuration.html) is not yet implemented for temporal 
joins.
-This means that the required state to compute the query result might grow 
infinitely depending on the number of distinct primary keys for the history 
table.
+**注意**: 临时 Join中的 State 保留(在 [查询配置](query_configuration.html) 
中定义)还未实现。这意味着计算的查询结果所需的状态可能会无限增长,具体数量取决于历史记录表的不重复主键个数。
 
-### Processing-time Temporal Joins
+### 基于 Processing-time 临时 Join
 
-With a processing-time time attribute, it is impossible to pass _past_ time 
attributes as an argument to the temporal table function.
-By definition, it is always the current timestamp. Thus, invocations of a 
processing-time temporal table function will always return the latest known 
versions of the underlying table
-and any updates in the underlying history table will also immediately 
overwrite the current values.
+如果将 processing-time 作为时间属性,将无法将 _past_ 时间属性作为参数传递给临时表函数。
+根据定义,processing-time 总会是当前时间戳。因此,基于 processing-time 
的临时表函数将始终返回基础表的最新已知版本,时态表函数的调用将始终返回基础表的最新已知版本,并且基础历史表中的任何更新也将立即覆盖当前值。
 
-Only the latest versions (with respect to the defined primary key) of the 
build side records are kept in the state.
-Updates of the build side will have no effect on previously emitted join 
results.
+只有最新版本的构建侧记录(是否最新由所定义的主键所决定)会被保存在 state 中。
+构建侧的更新不会对之前 Join 的结果产生影响。
 
-One can think about a processing-time temporal join as a simple `HashMap<K, 
V>` that stores all of the records from the build side.
-When a new record from the build side has the same key as some previous 
record, the old value is just simply overwritten.
-Every record from the probe side is always evaluated against the most 
recent/current state of the `HashMap`.
+可以将 processing-time 的临时 Join 视作简单的哈希Map `HashMap <K,V>`,HashMap 中存储来自构建侧的所有记录。
+当来自构建侧的新插入的记录与旧值具有相同的 Key 时,旧值仅会被覆盖。

Review comment:
       `旧值仅会被覆盖` -> `旧值会被覆盖` 会好一些吗

##########
File path: docs/dev/table/streaming/joins.zh.md
##########
@@ -189,50 +183,42 @@ val result = orders
 </div>
 </div>
 
-**Note**: State retention defined in a [query 
configuration](query_configuration.html) is not yet implemented for temporal 
joins.
-This means that the required state to compute the query result might grow 
infinitely depending on the number of distinct primary keys for the history 
table.
+**注意**: 临时 Join中的 State 保留(在 [查询配置](query_configuration.html) 
中定义)还未实现。这意味着计算的查询结果所需的状态可能会无限增长,具体数量取决于历史记录表的不重复主键个数。
 
-### Processing-time Temporal Joins
+### 基于 Processing-time 临时 Join
 
-With a processing-time time attribute, it is impossible to pass _past_ time 
attributes as an argument to the temporal table function.
-By definition, it is always the current timestamp. Thus, invocations of a 
processing-time temporal table function will always return the latest known 
versions of the underlying table
-and any updates in the underlying history table will also immediately 
overwrite the current values.
+如果将 processing-time 作为时间属性,将无法将 _past_ 时间属性作为参数传递给临时表函数。
+根据定义,processing-time 总会是当前时间戳。因此,基于 processing-time 
的临时表函数将始终返回基础表的最新已知版本,时态表函数的调用将始终返回基础表的最新已知版本,并且基础历史表中的任何更新也将立即覆盖当前值。
 
-Only the latest versions (with respect to the defined primary key) of the 
build side records are kept in the state.
-Updates of the build side will have no effect on previously emitted join 
results.
+只有最新版本的构建侧记录(是否最新由所定义的主键所决定)会被保存在 state 中。
+构建侧的更新不会对之前 Join 的结果产生影响。
 
-One can think about a processing-time temporal join as a simple `HashMap<K, 
V>` that stores all of the records from the build side.
-When a new record from the build side has the same key as some previous 
record, the old value is just simply overwritten.
-Every record from the probe side is always evaluated against the most 
recent/current state of the `HashMap`.
+可以将 processing-time 的临时 Join 视作简单的哈希Map `HashMap <K,V>`,HashMap 中存储来自构建侧的所有记录。
+当来自构建侧的新插入的记录与旧值具有相同的 Key 时,旧值仅会被覆盖。
+探针侧的每条记录将总会根据 `HashMap` 的最新/当前状态来计算。
 
-### Event-time Temporal Joins
+### 基于 Event-time 临时 Join
 
-With an event-time time attribute (i.e., a rowtime attribute), it is possible 
to pass _past_ time attributes to the temporal table function.
-This allows for joining the two tables at a common point in time.
+将 event-time 作为时间属性时,可将 _past_ 时间属性作为参数传递给临时表函数。
+这允许对两个表中在相同时间点的记录执行 Join 操作。
 
-Compared to processing-time temporal joins, the temporal table does not only 
keep the latest version (with respect to the defined primary key) of the build 
side records in the state
-but stores all versions (identified by time) since the last watermark.
+与基于 processing-time 的临时 Join 相比,临时表不仅将构建侧记录的最新版本(是否最新由所定义的主键所决定)保存在 state 
中,同时也会存储自上一个水印以来的所有版本(按时间区分)。
 
-For example, an incoming row with an event-time timestamp of `12:30:00` that 
is appended to the probe side table
-is joined with the version of the build side table at time `12:30:00` 
according to the [concept of temporal tables](temporal_tables.html).
-Thus, the incoming row is only joined with rows that have a timestamp lower or 
equal to `12:30:00` with
-applied updates according to the primary key until this point in time.
+例如,在探针侧表新插入一条 event-time 时间为 `12:30:00` 的记录,它将和构建侧表时间点为 `12:30:00` 
的版本根据[临时表的概念](temporal_tables.html)进行 Join 运算。
+因此,新插入的记录仅与时间戳小于等于 `12:30:00` 的记录进行 Join 计算(由主键决定哪些时间点的数据将参与计算)。
 
-By definition of event time, [watermarks]({{ site.baseurl 
}}/dev/event_time.html) allow the join operation to move
-forward in time and discard versions of the build table that are no longer 
necessary because no incoming row with
-lower or equal timestamp is expected.
+通过定义事件时间(event time),[watermarks]({{ site.baseurl }}/dev/event_time.html) 允许 
Join 运算不断向前滚动,丢弃不再需要的构建侧快照。因为不再需要时间戳更低或相等的记录。

Review comment:
       ```suggestion
   通过定义事件时间(event time),[watermarks]({{ site.baseurl }}/zh/dev/event_time.html) 
允许 Join 运算不断向前滚动,丢弃不再需要的构建侧快照。因为不再需要时间戳更低或相等的记录。
   ```
   整篇文章的 watermark 建议都不翻译,具体可以参考 
[wiki](https://cwiki.apache.org/confluence/display/FLINK/Flink+Translation+Specifications)

##########
File path: docs/dev/table/streaming/joins.zh.md
##########
@@ -22,37 +22,35 @@ specific language governing permissions and limitations
 under the License.
 -->
 
-Joins are a common and well-understood operation in batch data processing to 
connect the rows of two relations. However, the semantics of joins on [dynamic 
tables](dynamic_tables.html) are much less obvious or even confusing.
+Join 在批数据处理中是比较常见且广为人知的运算,一般用于连接两张关系表。然而在[动态表](dynamic_tables.html)中 Join 
的语义会更难以理解甚至让人困惑。
 
-Because of that, there are a couple of ways to actually perform a join using 
either Table API or SQL.
+因而,Flink 提供了几种基于 Table API 和 SQL 的 Join 方法。
 
-For more information regarding the syntax, please check the join sections in 
[Table API](../tableApi.html#joins) and [SQL]({{ site.baseurl 
}}/dev/table/sql/queries.html#joins).
+欲获取更多关于 Join 语法的细节,请参考 [Table API](../tableApi.html#joins) 和 [SQL]({{ 
site.baseurl }}/dev/table/sql/queries.html#joins) 中的 Join 章节。
 
 * This will be replaced by the TOC
 {:toc}
 
-Regular Joins
+常规 Join
 -------------
 
-Regular joins are the most generic type of join in which any new records or 
changes to either side of the join input are visible and are affecting the 
whole join result.
-For example, if there is a new record on the left side, it will be joined with 
all of the previous and future records on the right side.
+常规 Join 是最常用的 Join 用法。在常规 Join 中,任何新记录或对 Join 两侧的表的任何更改都是可见的,并会影响最终整个 Join 
的结果。例如,如果 Join 左侧插入了一条新的记录,那么它将会与 Join 右侧过去与将来的所有记录一起合并查询。
 
 {% highlight sql %}
 SELECT * FROM Orders
 INNER JOIN Product
 ON Orders.productId = Product.id
 {% endhighlight %}
 
-These semantics allow for any kind of updating (insert, update, delete) input 
tables.
+上述语意允许对输入表进行任意类型的更新操作(insert, update, delete)。
 
-However, this operation has an important implication: it requires to keep both 
sides of the join input in Flink's state forever.
-Thus, the resource usage will grow indefinitely as well, if one or both input 
tables are continuously growing.
+然而,常规 Join 隐含了一个重要的前提:即它需要在 Flink 的状态中永久保存 Join 两侧的数据。
+因而,如果 Join 操作中的一方或双方输入表持续增长的话,资源消耗也将会随之无限增长。

Review comment:
       建议 48 行和 47 行合并到一起,否这 “数据。“ 和 ”因而“ 中间会有空格

##########
File path: docs/dev/table/streaming/joins.zh.md
##########
@@ -22,37 +22,35 @@ specific language governing permissions and limitations
 under the License.
 -->
 
-Joins are a common and well-understood operation in batch data processing to 
connect the rows of two relations. However, the semantics of joins on [dynamic 
tables](dynamic_tables.html) are much less obvious or even confusing.
+Join 在批数据处理中是比较常见且广为人知的运算,一般用于连接两张关系表。然而在[动态表](dynamic_tables.html)中 Join 
的语义会更难以理解甚至让人困惑。

Review comment:
       `会更难以` -> `会难以` 是否会好一些。这里这样修改的初衷是因为没有比较,加上 “更” 一般会有一个被比较的对象在前面。

##########
File path: docs/dev/table/streaming/joins.zh.md
##########
@@ -63,18 +61,17 @@ WHERE o.id = s.orderId AND
       o.ordertime BETWEEN s.shiptime - INTERVAL '4' HOUR AND s.shiptime
 {% endhighlight %}
 
-Compared to a regular join operation, this kind of join only supports 
append-only tables with time attributes. Since time attributes are 
quasi-monotonic increasing, Flink can remove old values from its state without 
affecting the correctness of the result.
+与常规 Join 操作相比,时间窗口 Join 只支持带有时间属性的递增表。由于时间属性是单调递增的,Flink 
可以从状态中移除过期的数据,而不会影响结果的正确性。
 
-Join with a Temporal Table Function
+临时表函数 Join
 --------------------------
 
-A join with a temporal table function joins an append-only table (left 
input/probe side) with a temporal table (right input/build side),
-i.e., a table that changes over time and tracks its changes. Please check the 
corresponding page for more information about [temporal 
tables](temporal_tables.html).
+临时表函数 Join 
连接了一个递增表(左输入/探针侧)和一个临时表(右输入/构建侧),即一个随时间变化且不断追踪其改动的表。请参考[临时表](temporal_tables.html)的相关章节查看更多细节。
 
-The following example shows an append-only table `Orders` that should be 
joined with the continuously changing currency rates table `RatesHistory`.
+下方示例展示了一个递增表 `Orders` 与一个不断改变的汇率表 `RatesHistory` 的 Join 操作。
 
-`Orders` is an append-only table that represents payments for the given 
`amount` and the given `currency`.
-For example at `10:15` there was an order for an amount of `2 Euro`.
+`Orders` 表示了包含支付数据(数量字段 `amount` 和货币字段 `currency`)的递增表。
+例如 `10:15` 对应行的记录代表了一笔 2 欧元支付记录。

Review comment:
       这一行建议和上一行合并,否则会有多余的空格。

##########
File path: docs/dev/table/streaming/joins.zh.md
##########
@@ -63,18 +61,17 @@ WHERE o.id = s.orderId AND
       o.ordertime BETWEEN s.shiptime - INTERVAL '4' HOUR AND s.shiptime
 {% endhighlight %}
 
-Compared to a regular join operation, this kind of join only supports 
append-only tables with time attributes. Since time attributes are 
quasi-monotonic increasing, Flink can remove old values from its state without 
affecting the correctness of the result.
+与常规 Join 操作相比,时间窗口 Join 只支持带有时间属性的递增表。由于时间属性是单调递增的,Flink 
可以从状态中移除过期的数据,而不会影响结果的正确性。

Review comment:
       个人意见 “append-only tables” 这里翻译成“递增表” 能否有一个更好的描述呢?

##########
File path: docs/dev/table/streaming/joins.zh.md
##########
@@ -189,50 +183,42 @@ val result = orders
 </div>
 </div>
 
-**Note**: State retention defined in a [query 
configuration](query_configuration.html) is not yet implemented for temporal 
joins.
-This means that the required state to compute the query result might grow 
infinitely depending on the number of distinct primary keys for the history 
table.
+**注意**: 临时 Join中的 State 保留(在 [查询配置](query_configuration.html) 
中定义)还未实现。这意味着计算的查询结果所需的状态可能会无限增长,具体数量取决于历史记录表的不重复主键个数。
 
-### Processing-time Temporal Joins
+### 基于 Processing-time 临时 Join
 
-With a processing-time time attribute, it is impossible to pass _past_ time 
attributes as an argument to the temporal table function.
-By definition, it is always the current timestamp. Thus, invocations of a 
processing-time temporal table function will always return the latest known 
versions of the underlying table
-and any updates in the underlying history table will also immediately 
overwrite the current values.
+如果将 processing-time 作为时间属性,将无法将 _past_ 时间属性作为参数传递给临时表函数。
+根据定义,processing-time 总会是当前时间戳。因此,基于 processing-time 
的临时表函数将始终返回基础表的最新已知版本,时态表函数的调用将始终返回基础表的最新已知版本,并且基础历史表中的任何更新也将立即覆盖当前值。
 
-Only the latest versions (with respect to the defined primary key) of the 
build side records are kept in the state.
-Updates of the build side will have no effect on previously emitted join 
results.
+只有最新版本的构建侧记录(是否最新由所定义的主键所决定)会被保存在 state 中。
+构建侧的更新不会对之前 Join 的结果产生影响。
 
-One can think about a processing-time temporal join as a simple `HashMap<K, 
V>` that stores all of the records from the build side.
-When a new record from the build side has the same key as some previous 
record, the old value is just simply overwritten.
-Every record from the probe side is always evaluated against the most 
recent/current state of the `HashMap`.
+可以将 processing-time 的临时 Join 视作简单的哈希Map `HashMap <K,V>`,HashMap 中存储来自构建侧的所有记录。

Review comment:
       ```suggestion
   可以将 processing-time 的临时 Join 视作简单的哈希 Map `HashMap <K,V>`,HashMap 
中存储来自构建侧的所有记录。
   ```
   “简单的 `HashMap<K, V>`” 会更好一些吗

##########
File path: docs/dev/table/streaming/joins.zh.md
##########
@@ -63,18 +61,17 @@ WHERE o.id = s.orderId AND
       o.ordertime BETWEEN s.shiptime - INTERVAL '4' HOUR AND s.shiptime
 {% endhighlight %}
 
-Compared to a regular join operation, this kind of join only supports 
append-only tables with time attributes. Since time attributes are 
quasi-monotonic increasing, Flink can remove old values from its state without 
affecting the correctness of the result.
+与常规 Join 操作相比,时间窗口 Join 只支持带有时间属性的递增表。由于时间属性是单调递增的,Flink 
可以从状态中移除过期的数据,而不会影响结果的正确性。
 
-Join with a Temporal Table Function
+临时表函数 Join
 --------------------------
 
-A join with a temporal table function joins an append-only table (left 
input/probe side) with a temporal table (right input/build side),
-i.e., a table that changes over time and tracks its changes. Please check the 
corresponding page for more information about [temporal 
tables](temporal_tables.html).
+临时表函数 Join 
连接了一个递增表(左输入/探针侧)和一个临时表(右输入/构建侧),即一个随时间变化且不断追踪其改动的表。请参考[临时表](temporal_tables.html)的相关章节查看更多细节。

Review comment:
       `build side` 翻译成 `构建侧` 不确定是否合理,这个需要其他人确认下

##########
File path: docs/dev/table/streaming/joins.zh.md
##########
@@ -140,26 +137,23 @@ FROM
 WHERE r.currency = o.currency
 {% endhighlight %}
 
-Each record from the probe side will be joined with the version of the build 
side table at the time of the correlated time attribute of the probe side 
record.
-In order to support updates (overwrites) of previous values on the build side 
table, the table must define a primary key.
+探针侧的每条记录都将与构建侧的表执行 Join 运算,构建侧的表中与探针侧对应时间属性的记录将参与运算。
+为了支持更新(包括覆盖)构建侧的表,该表必须定义主键。
 
-In our example, each record from `Orders` will be joined with the version of 
`Rates` at time `o.rowtime`. The `currency` field has been defined as the 
primary key of `Rates` before and is used to connect both tables in our 
example. If the query were using a processing-time notion, a newly appended 
order would always be joined with the most recent version of `Rates` when 
executing the operation.
+在示例中,`Orders` 表中的每一条记录都与时间点 `o.rowtime` 的 `Rates` 进行 Join 运算。`currency` 
字段已被定义为 `Rates` 表的主键,在示例中该字段也被用于连接两个表。如果该查询采用的是 
processing-time,则在执行时新增的订单将始终与最新的 `Rates` 执行 Join。
 
-In contrast to [regular joins](#regular-joins), this means that if there is a 
new record on the build side, it will not affect the previous results of the 
join.
-This again allows Flink to limit the number of elements that must be kept in 
the state.
+与[常规 Join](#regular-joins)相反,临时表函数 Join 意味着如果在构建侧新增一行记录将不会影响之前的结果。这同时使得 Flink 
能够限制必须保存在 state 中的元素数量(因为不再需要保存之前的状态)。

Review comment:
       ```suggestion
   与[常规 Join](#regular-joins) 相反,临时表函数 Join 意味着如果在构建侧新增一行记录将不会影响之前的结果。这同时使得 
Flink 能够限制必须保存在 state 中的元素数量(因为不再需要保存之前的状态)。
   ```

##########
File path: docs/dev/table/streaming/joins.zh.md
##########
@@ -104,17 +101,17 @@ rowtime currency   rate
 11:49   Pounds      108
 {% endhighlight %}
 
-Given that we would like to calculate the amount of all `Orders` converted to 
a common currency (`Yen`).
+基于上述信息,欲计算 `Orders` 表中所有交易量并全部转换成日元。
 
-For example, we would like to convert the following order using the 
appropriate conversion rate for the given `rowtime` (`114`).
+例如,若要转换下表中的交易,需要使用对应时间区间内的汇率(即 `114`)。

Review comment:
       和上一行合并

##########
File path: docs/dev/table/streaming/joins.zh.md
##########
@@ -140,26 +137,23 @@ FROM
 WHERE r.currency = o.currency
 {% endhighlight %}
 
-Each record from the probe side will be joined with the version of the build 
side table at the time of the correlated time attribute of the probe side 
record.
-In order to support updates (overwrites) of previous values on the build side 
table, the table must define a primary key.
+探针侧的每条记录都将与构建侧的表执行 Join 运算,构建侧的表中与探针侧对应时间属性的记录将参与运算。
+为了支持更新(包括覆盖)构建侧的表,该表必须定义主键。

Review comment:
       建议和上一行合并

##########
File path: docs/dev/table/streaming/joins.zh.md
##########
@@ -140,26 +137,23 @@ FROM
 WHERE r.currency = o.currency
 {% endhighlight %}
 
-Each record from the probe side will be joined with the version of the build 
side table at the time of the correlated time attribute of the probe side 
record.
-In order to support updates (overwrites) of previous values on the build side 
table, the table must define a primary key.
+探针侧的每条记录都将与构建侧的表执行 Join 运算,构建侧的表中与探针侧对应时间属性的记录将参与运算。
+为了支持更新(包括覆盖)构建侧的表,该表必须定义主键。
 
-In our example, each record from `Orders` will be joined with the version of 
`Rates` at time `o.rowtime`. The `currency` field has been defined as the 
primary key of `Rates` before and is used to connect both tables in our 
example. If the query were using a processing-time notion, a newly appended 
order would always be joined with the most recent version of `Rates` when 
executing the operation.
+在示例中,`Orders` 表中的每一条记录都与时间点 `o.rowtime` 的 `Rates` 进行 Join 运算。`currency` 
字段已被定义为 `Rates` 表的主键,在示例中该字段也被用于连接两个表。如果该查询采用的是 
processing-time,则在执行时新增的订单将始终与最新的 `Rates` 执行 Join。
 
-In contrast to [regular joins](#regular-joins), this means that if there is a 
new record on the build side, it will not affect the previous results of the 
join.
-This again allows Flink to limit the number of elements that must be kept in 
the state.
+与[常规 Join](#regular-joins)相反,临时表函数 Join 意味着如果在构建侧新增一行记录将不会影响之前的结果。这同时使得 Flink 
能够限制必须保存在 state 中的元素数量(因为不再需要保存之前的状态)。
 
-Compared to [time-windowed joins](#time-windowed-joins), temporal table joins 
do not define a time window within which bounds the records will be joined.
-Records from the probe side are always joined with the build side's version at 
the time specified by the time attribute. Thus, records on the build side might 
be arbitrarily old.
-As time passes, the previous and no longer needed versions of the record (for 
the given primary key) will be removed from the state.
+与[时间窗口 Join](#time-windowed-joins) 相比,临时表 Join 没有定义限制了每次参与 Join 
运算的元素的时间范围。探针侧的记录总是会和构建侧中对应特定时间属性的数据进行 Join 
操作。因而在构建侧的记录可以是任意时间之前的。随着时间流动,之前产生的不再需要的记录(已给定了主键)将从 state 中移除。
 
-Such behaviour makes a temporal table join a good candidate to express stream 
enrichment in relational terms.
+这种做法让临时表 Join 成为一个很好的用于表达不同流之间关联的方法。
 
-### Usage
+### 用法
 
-After [defining temporal table 
function](temporal_tables.html#defining-temporal-table-function), we can start 
using it.
-Temporal table functions can be used in the same way as normal table functions 
would be used.
+在 [定义临时表函数](temporal_tables.html#defining-temporal-table-function) 之后就可以使用了。
+临时表函数可以和普通表函数一样使用。

Review comment:
       建议这一行和上一行合并

##########
File path: docs/dev/table/streaming/joins.zh.md
##########
@@ -140,26 +137,23 @@ FROM
 WHERE r.currency = o.currency
 {% endhighlight %}
 
-Each record from the probe side will be joined with the version of the build 
side table at the time of the correlated time attribute of the probe side 
record.
-In order to support updates (overwrites) of previous values on the build side 
table, the table must define a primary key.
+探针侧的每条记录都将与构建侧的表执行 Join 运算,构建侧的表中与探针侧对应时间属性的记录将参与运算。
+为了支持更新(包括覆盖)构建侧的表,该表必须定义主键。
 
-In our example, each record from `Orders` will be joined with the version of 
`Rates` at time `o.rowtime`. The `currency` field has been defined as the 
primary key of `Rates` before and is used to connect both tables in our 
example. If the query were using a processing-time notion, a newly appended 
order would always be joined with the most recent version of `Rates` when 
executing the operation.
+在示例中,`Orders` 表中的每一条记录都与时间点 `o.rowtime` 的 `Rates` 进行 Join 运算。`currency` 
字段已被定义为 `Rates` 表的主键,在示例中该字段也被用于连接两个表。如果该查询采用的是 
processing-time,则在执行时新增的订单将始终与最新的 `Rates` 执行 Join。
 
-In contrast to [regular joins](#regular-joins), this means that if there is a 
new record on the build side, it will not affect the previous results of the 
join.
-This again allows Flink to limit the number of elements that must be kept in 
the state.
+与[常规 Join](#regular-joins)相反,临时表函数 Join 意味着如果在构建侧新增一行记录将不会影响之前的结果。这同时使得 Flink 
能够限制必须保存在 state 中的元素数量(因为不再需要保存之前的状态)。
 
-Compared to [time-windowed joins](#time-windowed-joins), temporal table joins 
do not define a time window within which bounds the records will be joined.
-Records from the probe side are always joined with the build side's version at 
the time specified by the time attribute. Thus, records on the build side might 
be arbitrarily old.
-As time passes, the previous and no longer needed versions of the record (for 
the given primary key) will be removed from the state.
+与[时间窗口 Join](#time-windowed-joins) 相比,临时表 Join 没有定义限制了每次参与 Join 
运算的元素的时间范围。探针侧的记录总是会和构建侧中对应特定时间属性的数据进行 Join 
操作。因而在构建侧的记录可以是任意时间之前的。随着时间流动,之前产生的不再需要的记录(已给定了主键)将从 state 中移除。
 
-Such behaviour makes a temporal table join a good candidate to express stream 
enrichment in relational terms.
+这种做法让临时表 Join 成为一个很好的用于表达不同流之间关联的方法。
 
-### Usage
+### 用法
 
-After [defining temporal table 
function](temporal_tables.html#defining-temporal-table-function), we can start 
using it.
-Temporal table functions can be used in the same way as normal table functions 
would be used.
+在 [定义临时表函数](temporal_tables.html#defining-temporal-table-function) 之后就可以使用了。
+临时表函数可以和普通表函数一样使用。
 
-The following code snippet solves our motivating problem of converting 
currencies from the `Orders` table:
+接下来这段代码解决了我们一开始提出的问题,即从计算 `Orders` 表中交易量之和并转换为对应货币:

Review comment:
       ”即从计算 `Orders` 表中交易量之和并转换为对应货币:“ 这句话感觉不太通顺

##########
File path: docs/dev/table/streaming/joins.zh.md
##########
@@ -140,26 +137,23 @@ FROM
 WHERE r.currency = o.currency
 {% endhighlight %}
 
-Each record from the probe side will be joined with the version of the build 
side table at the time of the correlated time attribute of the probe side 
record.
-In order to support updates (overwrites) of previous values on the build side 
table, the table must define a primary key.
+探针侧的每条记录都将与构建侧的表执行 Join 运算,构建侧的表中与探针侧对应时间属性的记录将参与运算。
+为了支持更新(包括覆盖)构建侧的表,该表必须定义主键。
 
-In our example, each record from `Orders` will be joined with the version of 
`Rates` at time `o.rowtime`. The `currency` field has been defined as the 
primary key of `Rates` before and is used to connect both tables in our 
example. If the query were using a processing-time notion, a newly appended 
order would always be joined with the most recent version of `Rates` when 
executing the operation.
+在示例中,`Orders` 表中的每一条记录都与时间点 `o.rowtime` 的 `Rates` 进行 Join 运算。`currency` 
字段已被定义为 `Rates` 表的主键,在示例中该字段也被用于连接两个表。如果该查询采用的是 
processing-time,则在执行时新增的订单将始终与最新的 `Rates` 执行 Join。
 
-In contrast to [regular joins](#regular-joins), this means that if there is a 
new record on the build side, it will not affect the previous results of the 
join.
-This again allows Flink to limit the number of elements that must be kept in 
the state.
+与[常规 Join](#regular-joins)相反,临时表函数 Join 意味着如果在构建侧新增一行记录将不会影响之前的结果。这同时使得 Flink 
能够限制必须保存在 state 中的元素数量(因为不再需要保存之前的状态)。
 
-Compared to [time-windowed joins](#time-windowed-joins), temporal table joins 
do not define a time window within which bounds the records will be joined.
-Records from the probe side are always joined with the build side's version at 
the time specified by the time attribute. Thus, records on the build side might 
be arbitrarily old.
-As time passes, the previous and no longer needed versions of the record (for 
the given primary key) will be removed from the state.
+与[时间窗口 Join](#time-windowed-joins) 相比,临时表 Join 没有定义限制了每次参与 Join 
运算的元素的时间范围。探针侧的记录总是会和构建侧中对应特定时间属性的数据进行 Join 
操作。因而在构建侧的记录可以是任意时间之前的。随着时间流动,之前产生的不再需要的记录(已给定了主键)将从 state 中移除。
 
-Such behaviour makes a temporal table join a good candidate to express stream 
enrichment in relational terms.
+这种做法让临时表 Join 成为一个很好的用于表达不同流之间关联的方法。
 
-### Usage
+### 用法
 
-After [defining temporal table 
function](temporal_tables.html#defining-temporal-table-function), we can start 
using it.
-Temporal table functions can be used in the same way as normal table functions 
would be used.
+在 [定义临时表函数](temporal_tables.html#defining-temporal-table-function) 之后就可以使用了。

Review comment:
       ```suggestion
   在[定义临时表函数](temporal_tables.html#defining-temporal-table-function)之后就可以使用了。
   ```

##########
File path: docs/dev/table/streaming/joins.zh.md
##########
@@ -140,26 +137,23 @@ FROM
 WHERE r.currency = o.currency
 {% endhighlight %}
 
-Each record from the probe side will be joined with the version of the build 
side table at the time of the correlated time attribute of the probe side 
record.
-In order to support updates (overwrites) of previous values on the build side 
table, the table must define a primary key.
+探针侧的每条记录都将与构建侧的表执行 Join 运算,构建侧的表中与探针侧对应时间属性的记录将参与运算。
+为了支持更新(包括覆盖)构建侧的表,该表必须定义主键。
 
-In our example, each record from `Orders` will be joined with the version of 
`Rates` at time `o.rowtime`. The `currency` field has been defined as the 
primary key of `Rates` before and is used to connect both tables in our 
example. If the query were using a processing-time notion, a newly appended 
order would always be joined with the most recent version of `Rates` when 
executing the operation.
+在示例中,`Orders` 表中的每一条记录都与时间点 `o.rowtime` 的 `Rates` 进行 Join 运算。`currency` 
字段已被定义为 `Rates` 表的主键,在示例中该字段也被用于连接两个表。如果该查询采用的是 
processing-time,则在执行时新增的订单将始终与最新的 `Rates` 执行 Join。
 
-In contrast to [regular joins](#regular-joins), this means that if there is a 
new record on the build side, it will not affect the previous results of the 
join.
-This again allows Flink to limit the number of elements that must be kept in 
the state.
+与[常规 Join](#regular-joins)相反,临时表函数 Join 意味着如果在构建侧新增一行记录将不会影响之前的结果。这同时使得 Flink 
能够限制必须保存在 state 中的元素数量(因为不再需要保存之前的状态)。
 
-Compared to [time-windowed joins](#time-windowed-joins), temporal table joins 
do not define a time window within which bounds the records will be joined.
-Records from the probe side are always joined with the build side's version at 
the time specified by the time attribute. Thus, records on the build side might 
be arbitrarily old.
-As time passes, the previous and no longer needed versions of the record (for 
the given primary key) will be removed from the state.
+与[时间窗口 Join](#time-windowed-joins) 相比,临时表 Join 没有定义限制了每次参与 Join 
运算的元素的时间范围。探针侧的记录总是会和构建侧中对应特定时间属性的数据进行 Join 
操作。因而在构建侧的记录可以是任意时间之前的。随着时间流动,之前产生的不再需要的记录(已给定了主键)将从 state 中移除。

Review comment:
       `for the given primary key` 的意思是 `给定 primary key 对应的记录`?

##########
File path: docs/dev/table/streaming/joins.zh.md
##########
@@ -189,50 +183,42 @@ val result = orders
 </div>
 </div>
 
-**Note**: State retention defined in a [query 
configuration](query_configuration.html) is not yet implemented for temporal 
joins.
-This means that the required state to compute the query result might grow 
infinitely depending on the number of distinct primary keys for the history 
table.
+**注意**: 临时 Join中的 State 保留(在 [查询配置](query_configuration.html) 
中定义)还未实现。这意味着计算的查询结果所需的状态可能会无限增长,具体数量取决于历史记录表的不重复主键个数。
 
-### Processing-time Temporal Joins
+### 基于 Processing-time 临时 Join
 
-With a processing-time time attribute, it is impossible to pass _past_ time 
attributes as an argument to the temporal table function.
-By definition, it is always the current timestamp. Thus, invocations of a 
processing-time temporal table function will always return the latest known 
versions of the underlying table
-and any updates in the underlying history table will also immediately 
overwrite the current values.
+如果将 processing-time 作为时间属性,将无法将 _past_ 时间属性作为参数传递给临时表函数。

Review comment:
       `_past_ time` 是指过去的时间?

##########
File path: docs/dev/table/streaming/joins.zh.md
##########
@@ -189,50 +183,42 @@ val result = orders
 </div>
 </div>
 
-**Note**: State retention defined in a [query 
configuration](query_configuration.html) is not yet implemented for temporal 
joins.
-This means that the required state to compute the query result might grow 
infinitely depending on the number of distinct primary keys for the history 
table.
+**注意**: 临时 Join中的 State 保留(在 [查询配置](query_configuration.html) 
中定义)还未实现。这意味着计算的查询结果所需的状态可能会无限增长,具体数量取决于历史记录表的不重复主键个数。
 
-### Processing-time Temporal Joins
+### 基于 Processing-time 临时 Join

Review comment:
       这句话感觉不通顺,是否需要增加一个 “的” 呢

##########
File path: docs/dev/table/streaming/joins.zh.md
##########
@@ -189,50 +183,42 @@ val result = orders
 </div>
 </div>
 
-**Note**: State retention defined in a [query 
configuration](query_configuration.html) is not yet implemented for temporal 
joins.
-This means that the required state to compute the query result might grow 
infinitely depending on the number of distinct primary keys for the history 
table.
+**注意**: 临时 Join中的 State 保留(在 [查询配置](query_configuration.html) 
中定义)还未实现。这意味着计算的查询结果所需的状态可能会无限增长,具体数量取决于历史记录表的不重复主键个数。

Review comment:
       ```suggestion
   **注意**: 临时 Join 中的 State 保留(在[查询配置](query_configuration.html) 
中定义还未实现。这意味着计算的查询结果所需的状态可能会无限增长,具体数量取决于历史记录表的不重复主键个数。
   ```

##########
File path: docs/dev/table/streaming/joins.zh.md
##########
@@ -189,50 +183,42 @@ val result = orders
 </div>
 </div>
 
-**Note**: State retention defined in a [query 
configuration](query_configuration.html) is not yet implemented for temporal 
joins.
-This means that the required state to compute the query result might grow 
infinitely depending on the number of distinct primary keys for the history 
table.
+**注意**: 临时 Join中的 State 保留(在 [查询配置](query_configuration.html) 
中定义)还未实现。这意味着计算的查询结果所需的状态可能会无限增长,具体数量取决于历史记录表的不重复主键个数。
 
-### Processing-time Temporal Joins
+### 基于 Processing-time 临时 Join
 
-With a processing-time time attribute, it is impossible to pass _past_ time 
attributes as an argument to the temporal table function.
-By definition, it is always the current timestamp. Thus, invocations of a 
processing-time temporal table function will always return the latest known 
versions of the underlying table
-and any updates in the underlying history table will also immediately 
overwrite the current values.
+如果将 processing-time 作为时间属性,将无法将 _past_ 时间属性作为参数传递给临时表函数。
+根据定义,processing-time 总会是当前时间戳。因此,基于 processing-time 
的临时表函数将始终返回基础表的最新已知版本,时态表函数的调用将始终返回基础表的最新已知版本,并且基础历史表中的任何更新也将立即覆盖当前值。
 
-Only the latest versions (with respect to the defined primary key) of the 
build side records are kept in the state.
-Updates of the build side will have no effect on previously emitted join 
results.
+只有最新版本的构建侧记录(是否最新由所定义的主键所决定)会被保存在 state 中。
+构建侧的更新不会对之前 Join 的结果产生影响。
 
-One can think about a processing-time temporal join as a simple `HashMap<K, 
V>` that stores all of the records from the build side.
-When a new record from the build side has the same key as some previous 
record, the old value is just simply overwritten.
-Every record from the probe side is always evaluated against the most 
recent/current state of the `HashMap`.
+可以将 processing-time 的临时 Join 视作简单的哈希Map `HashMap <K,V>`,HashMap 中存储来自构建侧的所有记录。
+当来自构建侧的新插入的记录与旧值具有相同的 Key 时,旧值仅会被覆盖。
+探针侧的每条记录将总会根据 `HashMap` 的最新/当前状态来计算。
 
-### Event-time Temporal Joins
+### 基于 Event-time 临时 Join
 
-With an event-time time attribute (i.e., a rowtime attribute), it is possible 
to pass _past_ time attributes to the temporal table function.
-This allows for joining the two tables at a common point in time.
+将 event-time 作为时间属性时,可将 _past_ 时间属性作为参数传递给临时表函数。
+这允许对两个表中在相同时间点的记录执行 Join 操作。
 
-Compared to processing-time temporal joins, the temporal table does not only 
keep the latest version (with respect to the defined primary key) of the build 
side records in the state
-but stores all versions (identified by time) since the last watermark.
+与基于 processing-time 的临时 Join 相比,临时表不仅将构建侧记录的最新版本(是否最新由所定义的主键所决定)保存在 state 
中,同时也会存储自上一个水印以来的所有版本(按时间区分)。
 
-For example, an incoming row with an event-time timestamp of `12:30:00` that 
is appended to the probe side table
-is joined with the version of the build side table at time `12:30:00` 
according to the [concept of temporal tables](temporal_tables.html).
-Thus, the incoming row is only joined with rows that have a timestamp lower or 
equal to `12:30:00` with
-applied updates according to the primary key until this point in time.
+例如,在探针侧表新插入一条 event-time 时间为 `12:30:00` 的记录,它将和构建侧表时间点为 `12:30:00` 
的版本根据[临时表的概念](temporal_tables.html)进行 Join 运算。
+因此,新插入的记录仅与时间戳小于等于 `12:30:00` 的记录进行 Join 计算(由主键决定哪些时间点的数据将参与计算)。
 
-By definition of event time, [watermarks]({{ site.baseurl 
}}/dev/event_time.html) allow the join operation to move
-forward in time and discard versions of the build table that are no longer 
necessary because no incoming row with
-lower or equal timestamp is expected.
+通过定义事件时间(event time),[watermarks]({{ site.baseurl }}/dev/event_time.html) 允许 
Join 运算不断向前滚动,丢弃不再需要的构建侧快照。因为不再需要时间戳更低或相等的记录。
 
-Join with a Temporal Table
+临时表 Join
 --------------------------
 
-A join with a temporal table joins an arbitrary table (left input/probe side) 
with a temporal table (right input/build side),
-i.e., an external dimension table that changes over time. Please check the 
corresponding page for more information about [temporal 
tables](temporal_tables.html#temporal-table).
+临时表 Join 意味着对任意表(左输入/探针侧)和一个临时表(右输入/构建侧)执行的 Join 
操作,即随时间变化的的扩展表。请参考相应的页面以获取更多有关[临时表](temporal_tables.html#temporal-table)的信息。
 
-<span class="label label-danger">Attention</span> Users can not use arbitrary 
tables as a temporal table, but need to use a table backed by a 
`LookupableTableSource`. A `LookupableTableSource` can only be used for 
temporal join as a temporal table. See the page for more details about [how to 
define 
LookupableTableSource](../sourceSinks.html#defining-a-tablesource-with-lookupable).
+<span class="label label-danger">注意</span> 不是任何表都能用作临时表,用户必须使用来自接口 
`LookupableTableSource` 的表。接口 `LookupableTableSource` 的实例只能作为临时表用于临时 Join 
。查看此页面获取更多关于[如何实现接口 
`LookupableTableSource`](../sourceSinks.html#defining-a-tablesource-with-lookupable)
 的详细内容。

Review comment:
       这里能否再优化下,这里的意思是”不是任何表..., 能做为 xxx 的必须 yyy“?

##########
File path: docs/dev/table/streaming/joins.zh.md
##########
@@ -327,10 +313,10 @@ FROM table1 [AS <alias1>]
 ON table1.column-name1 = table2.column-name1
 {% endhighlight %}
 
-Currently, only support INNER JOIN and LEFT JOIN. The `FOR SYSTEM_TIME AS OF 
table1.proctime` should be followed after temporal table. `proctime` is a 
[processing time attribute](time_attributes.html#processing-time) of `table1`.
-This means that it takes a snapshot of the temporal table at processing time 
when joining every record from left table.
+目前只支持 INNER JOIN 和 LEFT JOIN,`FOR SYSTEM_TIME AS OF table1.proctime` 应位于临时表之后. 
`proctime` 是 `table1` 的 [processing time 
属性](time_attributes.html#processing-time).

Review comment:
       建议使用中文标点符号。




----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

For queries about this service, please contact Infrastructure at:
[email protected]


Reply via email to