[
https://issues.apache.org/jira/browse/FLINK-3226?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15147608#comment-15147608
]
ASF GitHub Bot commented on FLINK-3226:
---------------------------------------
Github user fhueske commented on a diff in the pull request:
https://github.com/apache/flink/pull/1634#discussion_r52924026
--- Diff:
flink-libraries/flink-table/src/main/scala/org/apache/flink/api/table/codegen/OperatorCodeGen.scala
---
@@ -18,20 +18,56 @@
package org.apache.flink.api.table.codegen
import org.apache.flink.api.common.typeinfo.BasicTypeInfo.BOOLEAN_TYPE_INFO
-import org.apache.flink.api.common.typeinfo.TypeInformation
+import org.apache.flink.api.common.typeinfo.{NumericTypeInfo,
TypeInformation}
import org.apache.flink.api.table.codegen.CodeGenUtils._
object OperatorCodeGen {
- def generateArithmeticOperator(
+ def generateArithmeticOperator(
operator: String,
nullCheck: Boolean,
resultType: TypeInformation[_],
left: GeneratedExpression,
right: GeneratedExpression)
: GeneratedExpression = {
- generateOperatorIfNotNull(nullCheck, resultType, left, right) {
+ // String arithmetic // TODO rework
+ if (isString(left)) {
+ generateOperatorIfNotNull(nullCheck, resultType, left, right) {
(leftTerm, rightTerm) => s"$leftTerm $operator $rightTerm"
+ }
+ }
+ // Numeric arithmetic
+ else if (isNumeric(left) && isNumeric(right)) {
+ val leftType = left.resultType.asInstanceOf[NumericTypeInfo[_]]
+ val rightType = right.resultType.asInstanceOf[NumericTypeInfo[_]]
+
+ generateOperatorIfNotNull(nullCheck, resultType, left, right) {
+ (leftTerm, rightTerm) =>
+ // insert auto casting for "narrowing primitive conversions"
+ if (leftType != rightType) {
+ // leftType can not be casted to rightType automatically ->
narrow
+ if (!leftType.shouldAutocastTo(rightType)) {
--- End diff --
Wouldn't this downcast `double` to `short` given an expression: `double +
short`?
> Translate optimized logical Table API plans into physical plans representing
> DataSet programs
> ---------------------------------------------------------------------------------------------
>
> Key: FLINK-3226
> URL: https://issues.apache.org/jira/browse/FLINK-3226
> Project: Flink
> Issue Type: Sub-task
> Components: Table API
> Reporter: Fabian Hueske
> Assignee: Chengxiang Li
>
> This issue is about translating an (optimized) logical Table API (see
> FLINK-3225) query plan into a physical plan. The physical plan is a 1-to-1
> representation of the DataSet program that will be executed. This means:
> - Each Flink RelNode refers to exactly one Flink DataSet or DataStream
> operator.
> - All (join and grouping) keys of Flink operators are correctly specified.
> - The expressions which are to be executed in user-code are identified.
> - All fields are referenced with their physical execution-time index.
> - Flink type information is available.
> - Optional: Add physical execution hints for joins
> The translation should be the final part of Calcite's optimization process.
> For this task we need to:
> - implement a set of Flink DataSet RelNodes. Each RelNode corresponds to one
> Flink DataSet operator (Map, Reduce, Join, ...). The RelNodes must hold all
> relevant operator information (keys, user-code expression, strategy hints,
> parallelism).
> - implement rules to translate optimized Calcite RelNodes into Flink
> RelNodes. We start with a straight-forward mapping and later add rules that
> merge several relational operators into a single Flink operator, e.g., merge
> a join followed by a filter. Timo implemented some rules for the first SQL
> implementation which can be used as a starting point.
> - Integrate the translation rules into the Calcite optimization process
--
This message was sent by Atlassian JIRA
(v6.3.4#6332)