Github user fhueske commented on a diff in the pull request:

    https://github.com/apache/flink/pull/1776#discussion_r56961903
  
    --- Diff: 
flink-tests/src/test/java/org/apache/flink/test/javaApiOperators/CustomDistributionITCase.java
 ---
    @@ -0,0 +1,184 @@
    +/*
    + * Licensed to the Apache Software Foundation (ASF) under one
    + * or more contributor license agreements.  See the NOTICE file
    + * distributed with this work for additional information
    + * regarding copyright ownership.  The ASF licenses this file
    + * to you under the Apache License, Version 2.0 (the
    + * "License"); you may not use this file except in compliance
    + * with the License.  You may obtain a copy of the License at
    + *
    + *     http://www.apache.org/licenses/LICENSE-2.0
    + *
    + * Unless required by applicable law or agreed to in writing, software
    + * distributed under the License is distributed on an "AS IS" BASIS,
    + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    + * See the License for the specific language governing permissions and
    + * limitations under the License.
    + */
    +
    +package org.apache.flink.test.javaApiOperators;
    +
    +import org.apache.flink.api.common.distributions.DataDistribution;
    +import org.apache.flink.api.common.functions.MapFunction;
    +import org.apache.flink.api.common.functions.RichMapPartitionFunction;
    +import org.apache.flink.api.common.typeinfo.BasicTypeInfo;
    +import org.apache.flink.api.common.typeinfo.TypeInformation;
    +import org.apache.flink.api.java.DataSet;
    +import org.apache.flink.api.java.ExecutionEnvironment;
    +import org.apache.flink.api.java.io.DiscardingOutputFormat;
    +import org.apache.flink.api.java.tuple.Tuple3;
    +import org.apache.flink.api.java.utils.DataSetUtils;
    +import org.apache.flink.core.memory.DataInputView;
    +import org.apache.flink.core.memory.DataOutputView;
    +import org.apache.flink.test.javaApiOperators.util.CollectionDataSets;
    +import org.apache.flink.util.Collector;
    +import org.junit.Test;
    +
    +
    +import java.io.IOException;
    +
    +import static org.junit.Assert.fail;
    +
    +
    +public class CustomDistributionITCase {
    +   
    +   @Test
    +   public void testPartitionWithDistribution1() throws Exception{
    +           /*
    +            * Test the record partitioned rightly with one field according 
to the customized data distribution
    +            */
    +
    +           ExecutionEnvironment env = 
ExecutionEnvironment.createLocalEnvironment();
    +
    +           DataSet<Tuple3<Integer, Long, String>> input1 = 
CollectionDataSets.get3TupleDataSet(env);
    +           final TestDataDist dist = new TestDataDist(1);
    +
    +           env.setParallelism(dist.getParallelism());
    +
    +           DataSet<Boolean> result = DataSetUtils.partitionByRange(input1, 
dist, 0).mapPartition(new RichMapPartitionFunction<Tuple3<Integer, Long, 
String>, Boolean>() {
    +                   @Override
    +                   public void mapPartition(Iterable<Tuple3<Integer, Long, 
String>> values, Collector<Boolean> out) throws Exception {
    +                           int partitionIndex = 
getRuntimeContext().getIndexOfThisSubtask();
    +
    +                           for (Tuple3<Integer, Long, String> s : values) {
    +                                   if ((s.f0 - 1) / 7 != partitionIndex) {
    +                                           fail("Record was not correctly 
partitioned: " + s.toString());
    +                                   }
    +                           }
    +                   }
    +           });
    +
    +           result.output(new DiscardingOutputFormat()); 
    +           env.execute();
    +   }
    +
    +   @Test
    +   public void testRangeWithDistribution2() throws Exception{
    +           /*
    +            * Test the record partitioned rightly with two fields 
according to the customized data distribution
    +            */
    +
    +           ExecutionEnvironment env = 
ExecutionEnvironment.createLocalEnvironment();
    +
    +           DataSet<Tuple3<Integer, Long, String>> input1 = 
CollectionDataSets.get3TupleDataSet(env);
    +           final TestDataDist dist = new TestDataDist(2);
    +
    +           env.setParallelism(dist.getParallelism());
    +
    +           DataSet<Boolean> result = 
DataSetUtils.partitionByRange(input1.map(new MapFunction<Tuple3<Integer, Long, 
String>, Tuple3<Integer, Integer, String>>() {
    +                   @Override
    +                   public Tuple3<Integer, Integer, String> 
map(Tuple3<Integer, Long, String> value) throws Exception {
    +                           return new Tuple3<>(value.f0, 
value.f1.intValue(), value.f2);
    +                   }
    +           }), dist, 0, 1).mapPartition(new 
RichMapPartitionFunction<Tuple3<Integer, Integer, String>, Boolean>() {
    +                   @Override
    +                   public void mapPartition(Iterable<Tuple3<Integer, 
Integer, String>> values, Collector<Boolean> out) throws Exception {
    +                           int partitionIndex = 
getRuntimeContext().getIndexOfThisSubtask();
    +
    +                           for (Tuple3<Integer, Integer, String> s : 
values) {
    +                                   if (s.f0 <= partitionIndex * 
(partitionIndex + 1) / 2 ||
    +                                                   s.f0 > (partitionIndex 
+ 1) * (partitionIndex + 2) / 2 ||
    +                                                   s.f1 - 1 != 
partitionIndex) {
    +                                           fail("Record was not correctly 
partitioned: " + s.toString());
    +                                   }
    +                           }
    +                   }
    +           });
    +
    +           result.output(new DiscardingOutputFormat());
    +           env.execute();
    +   }
    +
    +   /**
    +    * The class is used to do the tests of range partition with customed 
data distribution.
    +    */
    +   public static class TestDataDist implements DataDistribution {
    +
    +           private int dim;
    +
    +           public TestDataDist() {}
    +
    +           /**
    +            * Constructor of the customized distribution for range 
partition.
    +            * @param dim the number of the fields.
    +            */
    +           public TestDataDist(int dim) {
    +                   this.dim = dim;
    +           }
    +
    +           public int getParallelism() {
    +                   if (dim == 1) {
    +                           return 3;
    +                   }
    +                   return 6;
    +           }
    +
    +           @Override
    +           public Object[] getBucketBoundary(int bucketNum, int 
totalNumBuckets) {
    +                   if (dim == 1) {
    +                           /*
    +                           for the first test, the boundary is just like : 
    +                           (0, 7]
    +                           (7, 14]
    +                           (14, 21]
    +                            */
    +
    +                           return new Integer[]{(bucketNum + 1) * 7};
    +                   }
    +                   /*
    +                   for the second test, the boundary is just like : 
    +                   (0, 1], (0, 1]
    --- End diff --
    
    This is not a common distribution for composite range partition keys. It 
should look similar to this one:
    ```
    ( (1, 2), (1, 7) ]
    ( (1, 7), (3, 2) ]
    ( (3, 2), (4, 8) ]
    ...
    ```
    This would result in 4 partitions:
    
    - Partition 1: `(0,2), (1,1), (0,10), ...`
    - Partition 2: `(1,3), (2,20), (1,8), ...`
    - Partition 3: `(4,10), (3,5), ...`
    - Partition 4: `(5,3), (8,20), (4,12), ...`


---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at [email protected] or file a JIRA ticket
with INFRA.
---

Reply via email to