ZhijieYang commented on a change in pull request #16348:
URL: https://github.com/apache/flink/pull/16348#discussion_r664195807



##########
File path: docs/content.zh/docs/dev/table/functions/systemFunctions.md
##########
@@ -24,161 +24,161 @@ specific language governing permissions and limitations
 under the License.
 -->
 
-# System (Built-in) Functions
+# 系统(内置)函数
 
-Flink Table API & SQL provides users with a set of built-in functions for data 
transformations. This page gives a brief overview of them.
-If a function that you need is not supported yet, you can implement a 
[user-defined function]({{< ref "docs/dev/table/functions/udfs" >}}).
-If you think that the function is general enough, please <a 
href="https://issues.apache.org/jira/secure/CreateIssue!default.jspa";>open a 
Jira issue</a> for it with a detailed description.
+Flink Table API & SQL 为用户提供了一组内置的数据转换函数。本页简要介绍了它们。如果您需要的功能尚不支持,您可以实现
+[用户自定义功能]({{< ref "docs/dev/table/functions/udfs" >}})。如果你觉得这个功能够通用, 请
+<a href="https://issues.apache.org/jira/secure/CreateIssue!default.jspa";>创建一个 
Jira issue</a>并详细
+说明。
 
-Scalar Functions
+标量函数
 ----------------
 
-The scalar functions take zero, one or more values as the input and return a 
single value as the result.
+标量函数将零、一个或多个值作为输入并返回单个值作为结果。
 
-### Comparison Functions
+### 比较函数
 
-{{< sql_functions "comparison" >}}
+{{< sql_functions_zh "comparison" >}}
 
-### Logical Functions
+### 逻辑函数
 
-{{< sql_functions "logical" >}}
+{{< sql_functions_zh "logical" >}}
 
-### Arithmetic Functions
+### 算术函数
 
-{{< sql_functions "arithmetic" >}}
+{{< sql_functions_zh "arithmetic" >}}
 
-### String Functions
+### 字符串函数
 
-{{< sql_functions "string" >}}
+{{< sql_functions_zh "string" >}}
 
-### Temporal Functions
+### 时间函数
 
-{{< sql_functions "temporal" >}}
+{{< sql_functions_zh "temporal" >}}
 
-### Conditional Functions
+### 条件函数
 
-{{< sql_functions "conditional" >}}
+{{< sql_functions_zh "conditional" >}}
 
-### Type Conversion Functions
+### 类型转换函数
 
-{{< sql_functions "conversion" >}}
+{{< sql_functions_zh "conversion" >}}
 
-### Collection Functions
+### 集合函数
 
-{{< sql_functions "collection" >}}
+{{< sql_functions_zh "collection" >}}
 
-### Value Construction Functions
+### 构建值函数
 
-{{< sql_functions "valueconstruction" >}}
+{{< sql_functions_zh "valueconstruction" >}}
 
-### Value Access Functions
+### 获取值函数
 
-{{< sql_functions "valueaccess" >}}
+{{< sql_functions_zh "valueaccess" >}}
 
-### Grouping Functions
+### 分组函数
 
-{{< sql_functions "grouping" >}}
+{{< sql_functions_zh "grouping" >}}
 
-### Hash Functions
+### 哈希函数
 
-{{< sql_functions "hashfunctions" >}}
+{{< sql_functions_zh "hashfunctions" >}}
 
-### Auxiliary Functions
+### 辅助功能
 
-{{< sql_functions "auxilary" >}}
+{{< sql_functions_zh "auxilary" >}}
 
-Aggregate Functions
+聚合函数
 -------------------
 
-The aggregate functions take an expression across all the rows as the input 
and return a single aggregated value as the result. 
+聚合函数将所有的行作为输入,并返回单个聚合值作为结果。
 
-{{< sql_functions "aggregate" >}}
+{{< sql_functions_zh "aggregate" >}}
 
-Time Interval and Point Unit Specifiers
+时间间隔和点单位说明符
 ---------------------------------------
 
-The following table lists specifiers for time interval and time point units. 
-
-For Table API, please use `_` for spaces (e.g., `DAY_TO_HOUR`).
-
-| Time Interval Unit       | Time Point Unit                |
-| :----------------------- | :----------------------------- |
-| `MILLENIUM` _(SQL-only)_ |                                |
-| `CENTURY` _(SQL-only)_   |                                |
-| `YEAR`                   | `YEAR`                         |
-| `YEAR TO MONTH`          |                                |
-| `QUARTER`                | `QUARTER`                      |
-| `MONTH`                  | `MONTH`                        |
-| `WEEK`                   | `WEEK`                         |
-| `DAY`                    | `DAY`                          |
-| `DAY TO HOUR`            |                                |
-| `DAY TO MINUTE`          |                                |
-| `DAY TO SECOND`          |                                |
-| `HOUR`                   | `HOUR`                         |
-| `HOUR TO MINUTE`         |                                |
-| `HOUR TO SECOND`         |                                |
-| `MINUTE`                 | `MINUTE`                       |
-| `MINUTE TO SECOND`       |                                |
-| `SECOND`                 | `SECOND`                       |
-|                          | `MILLISECOND`                  |
-|                          | `MICROSECOND`                  |
-| `DOY` _(SQL-only)_       |                                |
-| `DOW` _(SQL-only)_       |                                |
-|                          | `SQL_TSI_YEAR` _(SQL-only)_    |
-|                          | `SQL_TSI_QUARTER` _(SQL-only)_ |
-|                          | `SQL_TSI_MONTH` _(SQL-only)_   |
-|                          | `SQL_TSI_WEEK` _(SQL-only)_    |
-|                          | `SQL_TSI_DAY` _(SQL-only)_     |
-|                          | `SQL_TSI_HOUR` _(SQL-only)_    |
-|                          | `SQL_TSI_MINUTE` _(SQL-only)_  |
-|                          | `SQL_TSI_SECOND ` _(SQL-only)_ |
+下表列出了时间间隔和时间点单位的说明符。
+
+对于 Table API,请使用 `_` 代替空格(例如 `DAY_TO_HOUR`)。
+
+| 时间间隔单位                | 时间点单位                        |
+| :------------------------ | :------------------------------ |
+| `MILLENIUM` _(仅适用SQL)_ |                                 |
+| `CENTURY` _(仅适用SQL)_   |                                 |
+| `YEAR`                    | `YEAR`                          |
+| `YEAR TO MONTH`           |                                 |
+| `QUARTER`                 | `QUARTER`                       |
+| `MONTH`                   | `MONTH`                         |
+| `WEEK`                    | `WEEK`                          |
+| `DAY`                     | `DAY`                           |
+| `DAY TO HOUR`             |                                 |
+| `DAY TO MINUTE`           |                                 |
+| `DAY TO SECOND`           |                                 |
+| `HOUR`                    | `HOUR`                          |
+| `HOUR TO MINUTE`          |                                 |
+| `HOUR TO SECOND`          |                                 |
+| `MINUTE`                  | `MINUTE`                        |
+| `MINUTE TO SECOND`        |                                 |
+| `SECOND`                  | `SECOND`                        |
+|                           | `MILLISECOND`                   |
+|                           | `MICROSECOND`                   |
+| `DOY` _(仅适用SQL)_       |                                 |
+| `DOW` _(仅适用SQL)_       |                                 |
+|                           | `SQL_TSI_YEAR` _(仅适用SQL)_    |
+|                           | `SQL_TSI_QUARTER` _(仅适用SQL)_ |
+|                           | `SQL_TSI_MONTH` _(仅适用SQL)_   |
+|                           | `SQL_TSI_WEEK` _(仅适用SQL)_    |
+|                           | `SQL_TSI_DAY` _(仅适用SQL)_     |
+|                           | `SQL_TSI_HOUR` _(仅适用SQL)_    |
+|                           | `SQL_TSI_MINUTE` _(仅适用SQL)_  |
+|                           | `SQL_TSI_SECOND ` _(仅适用SQL)_ |
 
 {{< top >}}
 
-Column Functions
+列函数
 ---------------------------------------
 
-The column functions are used to select or deselect table columns.
+列函数用于选择或不选表的列。

Review comment:
       How about `列函数用于选择或丢弃表的列。` sounds smoothly.

##########
File path: docs/content.zh/docs/dev/table/functions/systemFunctions.md
##########
@@ -24,161 +24,161 @@ specific language governing permissions and limitations
 under the License.
 -->
 
-# System (Built-in) Functions
+# 系统(内置)函数
 
-Flink Table API & SQL provides users with a set of built-in functions for data 
transformations. This page gives a brief overview of them.
-If a function that you need is not supported yet, you can implement a 
[user-defined function]({{< ref "docs/dev/table/functions/udfs" >}}).
-If you think that the function is general enough, please <a 
href="https://issues.apache.org/jira/secure/CreateIssue!default.jspa";>open a 
Jira issue</a> for it with a detailed description.
+Flink Table API & SQL 为用户提供了一组内置的数据转换函数。本页简要介绍了它们。如果您需要的功能尚不支持,您可以实现
+[用户自定义功能]({{< ref "docs/dev/table/functions/udfs" >}})。如果你觉得这个功能够通用, 请

Review comment:
        there is no doubt that the `function` is translated into `函数`.
   but I don't agree that the author wants to express `不够通用`, because only when 
the function is general enough you can open a Jira for it.

##########
File path: docs/content.zh/docs/dev/table/functions/systemFunctions.md
##########
@@ -24,161 +24,161 @@ specific language governing permissions and limitations
 under the License.
 -->
 
-# System (Built-in) Functions
+# 系统(内置)函数
 
-Flink Table API & SQL provides users with a set of built-in functions for data 
transformations. This page gives a brief overview of them.
-If a function that you need is not supported yet, you can implement a 
[user-defined function]({{< ref "docs/dev/table/functions/udfs" >}}).
-If you think that the function is general enough, please <a 
href="https://issues.apache.org/jira/secure/CreateIssue!default.jspa";>open a 
Jira issue</a> for it with a detailed description.
+Flink Table API & SQL 为用户提供了一组内置的数据转换函数。本页简要介绍了它们。如果您需要的功能尚不支持,您可以实现
+[用户自定义功能]({{< ref "docs/dev/table/functions/udfs" >}})。如果你觉得这个功能够通用, 请
+<a href="https://issues.apache.org/jira/secure/CreateIssue!default.jspa";>创建一个 
Jira issue</a>并详细
+说明。
 
-Scalar Functions
+标量函数
 ----------------
 
-The scalar functions take zero, one or more values as the input and return a 
single value as the result.
+标量函数将零、一个或多个值作为输入并返回单个值作为结果。
 
-### Comparison Functions
+### 比较函数
 
-{{< sql_functions "comparison" >}}
+{{< sql_functions_zh "comparison" >}}
 
-### Logical Functions
+### 逻辑函数
 
-{{< sql_functions "logical" >}}
+{{< sql_functions_zh "logical" >}}
 
-### Arithmetic Functions
+### 算术函数
 
-{{< sql_functions "arithmetic" >}}
+{{< sql_functions_zh "arithmetic" >}}
 
-### String Functions
+### 字符串函数
 
-{{< sql_functions "string" >}}
+{{< sql_functions_zh "string" >}}
 
-### Temporal Functions
+### 时间函数
 
-{{< sql_functions "temporal" >}}
+{{< sql_functions_zh "temporal" >}}
 
-### Conditional Functions
+### 条件函数
 
-{{< sql_functions "conditional" >}}
+{{< sql_functions_zh "conditional" >}}
 
-### Type Conversion Functions
+### 类型转换函数
 
-{{< sql_functions "conversion" >}}
+{{< sql_functions_zh "conversion" >}}
 
-### Collection Functions
+### 集合函数
 
-{{< sql_functions "collection" >}}
+{{< sql_functions_zh "collection" >}}
 
-### Value Construction Functions
+### 构建值函数
 
-{{< sql_functions "valueconstruction" >}}
+{{< sql_functions_zh "valueconstruction" >}}
 
-### Value Access Functions
+### 获取值函数
 
-{{< sql_functions "valueaccess" >}}
+{{< sql_functions_zh "valueaccess" >}}
 
-### Grouping Functions
+### 分组函数
 
-{{< sql_functions "grouping" >}}
+{{< sql_functions_zh "grouping" >}}
 
-### Hash Functions
+### 哈希函数
 
-{{< sql_functions "hashfunctions" >}}
+{{< sql_functions_zh "hashfunctions" >}}
 
-### Auxiliary Functions
+### 辅助功能

Review comment:
       How about `辅助函数`?

##########
File path: docs/content.zh/docs/dev/table/functions/systemFunctions.md
##########
@@ -24,161 +24,161 @@ specific language governing permissions and limitations
 under the License.
 -->
 
-# System (Built-in) Functions
+# 系统(内置)函数
 
-Flink Table API & SQL provides users with a set of built-in functions for data 
transformations. This page gives a brief overview of them.
-If a function that you need is not supported yet, you can implement a 
[user-defined function]({{< ref "docs/dev/table/functions/udfs" >}}).
-If you think that the function is general enough, please <a 
href="https://issues.apache.org/jira/secure/CreateIssue!default.jspa";>open a 
Jira issue</a> for it with a detailed description.
+Flink Table API & SQL 为用户提供了一组内置的数据转换函数。本页简要介绍了它们。如果您需要的功能尚不支持,您可以实现
+[用户自定义功能]({{< ref "docs/dev/table/functions/udfs" >}})。如果你觉得这个功能够通用, 请
+<a href="https://issues.apache.org/jira/secure/CreateIssue!default.jspa";>创建一个 
Jira issue</a>并详细
+说明。
 
-Scalar Functions
+标量函数
 ----------------
 
-The scalar functions take zero, one or more values as the input and return a 
single value as the result.
+标量函数将零、一个或多个值作为输入并返回单个值作为结果。
 
-### Comparison Functions
+### 比较函数
 
-{{< sql_functions "comparison" >}}
+{{< sql_functions_zh "comparison" >}}
 
-### Logical Functions
+### 逻辑函数
 
-{{< sql_functions "logical" >}}
+{{< sql_functions_zh "logical" >}}
 
-### Arithmetic Functions
+### 算术函数
 
-{{< sql_functions "arithmetic" >}}
+{{< sql_functions_zh "arithmetic" >}}
 
-### String Functions
+### 字符串函数
 
-{{< sql_functions "string" >}}
+{{< sql_functions_zh "string" >}}
 
-### Temporal Functions
+### 时间函数
 
-{{< sql_functions "temporal" >}}
+{{< sql_functions_zh "temporal" >}}
 
-### Conditional Functions
+### 条件函数
 
-{{< sql_functions "conditional" >}}
+{{< sql_functions_zh "conditional" >}}
 
-### Type Conversion Functions
+### 类型转换函数
 
-{{< sql_functions "conversion" >}}
+{{< sql_functions_zh "conversion" >}}
 
-### Collection Functions
+### 集合函数
 
-{{< sql_functions "collection" >}}
+{{< sql_functions_zh "collection" >}}
 
-### Value Construction Functions
+### 构建值函数
 
-{{< sql_functions "valueconstruction" >}}
+{{< sql_functions_zh "valueconstruction" >}}
 
-### Value Access Functions
+### 获取值函数
 
-{{< sql_functions "valueaccess" >}}
+{{< sql_functions_zh "valueaccess" >}}
 
-### Grouping Functions
+### 分组函数

Review comment:
       but I don't think `Grouping` is a special word here. If you think it's 
necessary I will modify it. @RocMarshal 

##########
File path: docs/data/sql_functions_zh.yml
##########
@@ -0,0 +1,820 @@
+# Licensed to the Apache Software Foundation (ASF) under one
+# or more contributor license agreements.  See the NOTICE file
+# distributed with this work for additional information
+# regarding copyright ownership.  The ASF licenses this file
+# to you under the Apache License, Version 2.0 (the
+# "License"); you may not use this file except in compliance
+# with the License.  You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing,
+# software distributed under the License is distributed on an
+# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+# KIND, either express or implied.  See the License for the
+# specific language governing permissions and limitations
+# under the License
+
+comparison:
+  - sql: value1 = value2
+    table: value1 === value2
+    description: 如果 value1 等于 value2 返回 `TRUE`;如果 value1 或者 value2 为 NULL 返回 
`UNKNOW`。
+  - sql: value1 <> value2
+    table: value1 !== value2
+    description: 如果 value1 不等于 value2 返回 `TRUE`;如果 value1 或 value2 为 NULL 返回 
`UNKNOWN`。
+  - sql: value1 > value2
+    table: value1 > value2
+    description: 如果 value1 大于 value2 返回 `TRUE`;如果 value1 或 value2 为 NULL 返回 
`UNKNOWN`。
+  - sql: value1 >= value2
+    table: value1 >= value2
+    description: 如果 value1 大于或等于 value2 返回 `TRUE`;如果 value1 或 value2 为 NULL 返回 
`UNKNOWN`。
+  - sql: value1 < value2
+    table: value1 < value2
+    description: 如果 value1 小于 value2 返回 `TRUE`;如果 value1 或 value2 为 NULL 返回 
`UNKNOWN`。
+  - sql: value1 <= value2
+    table: value1 <= value2
+    description: 如果 value1 小于或等于 value2 返回 `TRUE`;如果 value1 或 value2 为 NULL 返回 
`UNKNOWN`。
+  - sql: value IS NULL
+    table: value.isNull
+    description: 如果值为 NULL 返回 `TRUE`。
+  - sql: value IS NOT NULL
+    table: value.isNotNull
+    description: 如果值不为 NULL 返回 `TRUE`。
+  - sql: value1 IS DISTINCT FROM value2
+    description: |
+      A 和 B 的数据类型、值不完全相同返回 `TRUE`。A 和 B 的数据类型、值都相同返回 `FALSE`。将 NULL 视为相同。
+      例如 `1 IS DISTINCT FROM NULL` 返回 `TRUE`;`NULL IS DISTINCT FROM NULL` 返回 
`FALSE`。
+  - sql: value1 IS NOT DISTINCT FROM value2
+    description: |
+      A 和 B 的数据类型、值都相同返回 `TRUE`。A 和 B 的数据类型、值不完全相同则返回 `FALSE`。将 NULL 视为相同。
+      例如 `1 IS NOT DISTINCT FROM NULL` 返回 `FALSE`;`NULL IS NOT DISTINCT FROM 
NULL` 返回 `TRUE`。
+  - sql: value1 BETWEEN [ ASYMMETRIC | SYMMETRIC ] value2 AND value3
+    description: |
+      默认或使用 ASYMMETRIC 关键字的情况下,如果 value1 大于等于 value2 且小于等于 value3 返回 `TRUE`。
+      使用 SYMMETRIC 关键字则 value1 在 value2 和 value3 之间返回 `TRUE`。
+      当 value2 或 value3 为 NULL 时,返回 `FALSE` 或`UNKNOWN`。
+      例如 `12 BETWEEN 15 AND 12` 返回 `FALSE`;
+      `12 BETWEEN SYMMETRIC 15 AND 12` 返回 `TRUE`;
+      `12 BETWEEN 10 AND NULL` 返回 `UNKNOWN`;
+      `12 BETWEEN NULL AND 10` 返回 `FALSE`;
+      `12 BETWEEN SYMMETRIC NULL AND 12` 返回 `UNKNOWN`。
+  - sql: value1 NOT BETWEEN [ ASYMMETRIC | SYMMETRIC ] value2 AND value3
+    description: |
+      默认或使用 ASYMMETRIC 关键字的情况下,如果 value1 小于 value2 或大于 value3,则返回 `TRUE`。
+      使用 SYMMETRIC 关键字则 value1 不在 value2 和 value3 之间返回 `TRUE`。
+      当 value2 或 value3 为 NULL 时,返回 `TRUE` 或 `UNKNOWN`。
+      例如 `12 NOT BETWEEN 15 AND 12` 返回 `TRUE`;
+      `12 NOT BETWEEN SYMMETRIC 15 AND 12` 返回 `FALSE`;
+      `12 NOT BETWEEN NULL AND 15` 返回 `UNKNOWN`;
+      `12 NOT BETWEEN 15 AND NULL` 返回 `TRUE`;
+      `12 NOT BETWEEN SYMMETRIC 12 AND NULL` 返回 `UNKNOWN`。
+  - sql: string1 LIKE string2 [ ESCAPE char ]
+    table: string1.like(string2)
+    description: |
+      如果 string1 匹配 string2 返回 `TRUE`;如果 string1 或 string2 为 NULL 返回 `UNKNOWN`。
+      如果需要可以定义转义字符。尚不支持转义字符。
+  - sql: string1 NOT LIKE string2 [ ESCAPE char ]
+    description: |
+      如果 string1 与 string2 不匹配返回 `TRUE`;如果 string1 或 string2 为 NULL 返回 
`UNKNOWN`。
+      如果需要可以定义转义字符。尚不支持转义字符。
+  - sql: string1 SIMILAR TO string2 [ ESCAPE char ]
+    table: string1.similar(string2)
+    description: |
+      如果 string1 匹配 SQL 正则表达式 string2 返回 `TRUE`;如果 string1 或 string2 为 NULL 返回
+      `UNKNOWN`。如果需要可以定义转义字符。尚不支持转义字符。
+  - sql: string1 NOT SIMILAR TO string2 [ ESCAPE char ]
+    description: |
+      如果 string1 与 SQL 正则表达式 string2 不匹配返回 `TRUE`;如果 string1 或 string2 为 NULL 
返回
+      `UNKNOWN`。如果需要可以定义转义字符。尚不支持转义字符。
+  - sql: value1 IN (value2 [, value3]* )
+    table: value1.in(valu2)
+    description: |
+      在给定列表(value2、value3、...)中存在 value1 返回 `TRUE`。当列表包含 NULL,如果可以找到 value1 则返回

Review comment:
       I will change all the `、` to `,`




-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]


Reply via email to