[ 
https://issues.apache.org/jira/browse/FLINK-18464?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=17377158#comment-17377158
 ] 

guxiang commented on FLINK-18464:
---------------------------------

[~yunta]

Thanks for your  reply.   Sorry for not replying these days, I'm a little busy 
at work

I just test the performance by a for  loop  to test the performance  

[https://github.com/apache/flink/pull/16273/files#diff-75c634234efe759f72c64e98d07cb8fb05317d582858a5f7f15eaf33c0c3a857]

 
{code:java}
//代码占位符
long start = System.currentTimeMillis();
for (int i = 0; i < 1000000000L; i++) {
    ValueState<Boolean> firstSeen2 = ctx.getPartitionedState(
            new ValueStateDescriptor<Boolean>("first-seen", Types.BOOLEAN)
    );
    ListState<Long> timerListState = ctx.getPartitionedState(
            new ListStateDescriptor<Long>("timer-list", Types.LONG)
    );
}
long end = System.currentTimeMillis();
System.out.println("the onElement test use time:"+(end-start));

{code}
 

!image-2021-07-08-14-50-12-559.png|width=454,height=121!

 
{code:java}
 lastNamespaceSerializer.equals(namespaceSerializer)
{code}
This code uses only 0.24% of the performance  in the program.

 

The way I understand it, we're going to call getPartitionedState less and we're 
going to call the method

value()   more.   Because I think we normally call getPartitionedState in the 
method open()  of RichFunction,Only one call is made when the program is 
started.

I would like to ask if you think this 0.24 performance loss is acceptable. Or 
there's a better way to optimize it.

 

 

> ClassCastException during namespace serialization for checkpoint (Heap and 
> RocksDB)
> -----------------------------------------------------------------------------------
>
>                 Key: FLINK-18464
>                 URL: https://issues.apache.org/jira/browse/FLINK-18464
>             Project: Flink
>          Issue Type: Bug
>          Components: Runtime / Checkpointing, Runtime / State Backends
>    Affects Versions: 1.9.3, 1.13.1
>            Reporter: Roman Khachatryan
>            Priority: Major
>              Labels: pull-request-available
>         Attachments: image-2021-06-21-20-06-51-323.png, 
> image-2021-06-21-20-07-30-281.png, image-2021-06-21-20-07-43-246.png, 
> image-2021-06-21-20-33-39-295.png, image-2021-06-23-14-34-37-703.png, 
> image-2021-06-24-16-41-54-425.png, image-2021-06-24-17-51-53-734.png, 
> image-2021-07-08-14-50-12-559.png
>
>
> (see FLINK-23036 for error details with RocksDB)
>  
> From 
> [thread|http://apache-flink-user-mailing-list-archive.2336050.n4.nabble.com/Checkpoint-failed-because-of-TimeWindow-cannot-be-cast-to-VoidNamespace-td36310.html]
> {quote}I'm using flink 1.9 on Mesos and I try to use my own trigger and 
> evictor. The state is stored to memory.
> {quote}
>  
>   
> {code:java}
> input.setParallelism(processParallelism)
>         .assignTimestampsAndWatermarks(new UETimeAssigner)
>         .keyBy(_.key)
>         .window(TumblingEventTimeWindows.of(Time.minutes(20)))
>         .trigger(new MyTrigger)
>         .evictor(new MyEvictor)
>         .process(new MyFunction).setParallelism(aggregateParallelism)
>         .addSink(kafkaSink).setParallelism(sinkParallelism)
>         .name("kafka-record-sink"){code}
>  
>  
> {code:java}
> java.lang.Exception: Could not materialize checkpoint 1 for operator 
> Window(TumblingEventTimeWindows(1200000), JoinTrigger, JoinEvictor, 
> ScalaProcessWindowFunctionWrapper) -> Sink: kafka-record-sink (2/5).
>      at 
> org.apache.flink.streaming.runtime.tasks.StreamTask$AsyncCheckpointRunnable.handleExecutionException(StreamTask.java:1100)
>      at 
> org.apache.flink.streaming.runtime.tasks.StreamTask$AsyncCheckpointRunnable.run(StreamTask.java:1042)
>      at 
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
>      at 
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
>      at java.lang.Thread.run(Thread.java:748)
> Caused by: java.util.concurrent.ExecutionException: 
> java.lang.ClassCastException: 
> org.apache.flink.streaming.api.windowing.windows.TimeWindow cannot be cast to 
> org.apache.flink.runtime.state.VoidNamespace
>      at java.util.concurrent.FutureTask.report(FutureTask.java:122)
>      at java.util.concurrent.FutureTask.get(FutureTask.java:192)
>      at 
> org.apache.flink.runtime.concurrent.FutureUtils.runIfNotDoneAndGet(FutureUtils.java:450)
>      at 
> org.apache.flink.streaming.api.operators.OperatorSnapshotFinalizer.<init>(OperatorSnapshotFinalizer.java:47)
>      at 
> org.apache.flink.streaming.runtime.tasks.StreamTask$AsyncCheckpointRunnable.run(StreamTask.java:1011)
>      
>  ... 3 more 
> Caused by: java.lang.ClassCastException: 
> org.apache.flink.streaming.api.windowing.windows.TimeWindow cannot be cast to 
> org.apache.flink.runtime.state.VoidNamespace
>      at 
> org.apache.flink.runtime.state.VoidNamespaceSerializer.serialize(VoidNamespaceSerializer.java:32)
>      at 
> org.apache.flink.runtime.state.heap.CopyOnWriteStateMapSnapshot.writeState(CopyOnWriteStateMapSnapshot.java:114)
>      at 
> org.apache.flink.runtime.state.heap.AbstractStateTableSnapshot.writeStateInKeyGroup(AbstractStateTableSnapshot.java:121)
>      at 
> org.apache.flink.runtime.state.heap.CopyOnWriteStateTableSnapshot.writeStateInKeyGroup(CopyOnWriteStateTableSnapshot.java:37)
>      at 
> org.apache.flink.runtime.state.heap.HeapSnapshotStrategy$1.callInternal(HeapSnapshotStrategy.java:191)
>      at 
> org.apache.flink.runtime.state.heap.HeapSnapshotStrategy$1.callInternal(HeapSnapshotStrategy.java:158)
>      at 
> org.apache.flink.runtime.state.AsyncSnapshotCallable.call(AsyncSnapshotCallable.java:75)
>      at java.util.concurrent.FutureTask.run(FutureTask.java:266)
>      at 
> org.apache.flink.runtime.concurrent.FutureUtils.runIfNotDoneAndGet(FutureUtils.java:447)
>     
>      ... 5 more
> {code}
>  
>  



--
This message was sent by Atlassian Jira
(v8.3.4#803005)

Reply via email to