lindong28 commented on a change in pull request #36:
URL: https://github.com/apache/flink-ml/pull/36#discussion_r751994968
##########
File path: flink-ml-python/README.md
##########
@@ -0,0 +1,17 @@
+Flink ML is a library which provides machine learning (ML) APIs and libraries
that simplify the building of machine learning pipelines. It provides a set of
standard ML APIs for MLlib developers to implement ML algorithms, as well as
libraries of ML algorithms that can be used to build ML pipelines for both
training and inference jobs.
Review comment:
Do we need to explain flink-ml-python specific instructions in this
READMe, similar to `flink-python/README.md`?
##########
File path: flink-ml-python/apache_flink_ml/ml/param/param.py
##########
@@ -0,0 +1,337 @@
+################################################################################
+# Licensed to the Apache Software Foundation (ASF) under one
+# or more contributor license agreements. See the NOTICE file
+# distributed with this work for additional information
+# regarding copyright ownership. The ASF licenses this file
+# to you under the Apache License, Version 2.0 (the
+# "License"); you may not use this file except in compliance
+# with the License. You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+################################################################################
+
+from abc import ABC, abstractmethod
+from typing import TypeVar, Generic, List, Dict, Any, Optional, Tuple, Union
+
+import jsonpickle
+
+T = TypeVar('T')
+V = TypeVar('V')
+
+
+class WithParams(Generic[T], ABC):
+ """
+ Interface for classes that take parameters. It provides APIs to set and
get parameters.
+ """
+
+ def set(self, param: 'Param[V]', value: V) -> 'T':
Review comment:
The logic of set(...) in Java was recently updated such that it throws
exception if the param is not already defined on this class. Could we do the
same here?
##########
File path: flink-ml-python/apache_flink_ml/mllib/__init__.py
##########
@@ -0,0 +1,17 @@
+################################################################################
Review comment:
Should this file be under path `flink-ml-python/apache_flink_ml/ml/lib`
to be consistent with e.g. `flink-ml-python/apache_flink_ml/ml/api`?
##########
File path: flink-ml-python/apache_flink_ml/ml/api/core.py
##########
@@ -0,0 +1,221 @@
+################################################################################
+# Licensed to the Apache Software Foundation (ASF) under one
+# or more contributor license agreements. See the NOTICE file
+# distributed with this work for additional information
+# regarding copyright ownership. The ASF licenses this file
+# to you under the Apache License, Version 2.0 (the
+# "License"); you may not use this file except in compliance
+# with the License. You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+################################################################################
+
+from abc import ABC, abstractmethod
+from typing import TypeVar, Generic, List
+
+from pyflink.datastream import StreamExecutionEnvironment
+from pyflink.table import Table
+
+from apache_flink_ml.ml.param.param import WithParams
+
+T = TypeVar('T')
+E = TypeVar('E')
+M = TypeVar('M')
+
+
+class Stage(WithParams[T], ABC):
+ """
+ Base class for a node in a Pipeline or Graph. The interface is only a
concept, and does not have
+ any actual functionality. Its subclasses could be Estimator, Model,
Transformer or AlgoOperator.
+ No other classes should inherit this interface directly.
+
+ Each stage is with parameters, and requires a public empty constructor for
restoration.
+ """
+
+ @abstractmethod
+ def save(self, path: str) -> None:
+ """
+ Saves this stage to the given path.
+ """
+ pass
+
+ @classmethod
+ @abstractmethod
+ def load(cls, env: StreamExecutionEnvironment, path: str) -> T:
+ """
+ Instantiates a new stage instance based on the data read from the
given path.
+ """
+ pass
+
+
+class AlgoOperator(Stage[T], ABC):
+ """
+ An AlgoOperator takes a list of tables as inputs and produces a list of
tables as results. It
+ can be used to encode generic multi-input multi-output computation logic.
+ """
+
+ @abstractmethod
+ def transform(self, *inputs: Table) -> List[Table]:
+ """
+ Applies the AlgoOperator on the given input tables and returns the
result tables.
+
+ :param inputs: A list of tables.
+ :return: A list of tables.
+ """
+ pass
+
+
+class Transformer(AlgoOperator[T], ABC):
+ """
+ A Transformer is an AlgoOperator with the semantic difference that it
encodes the Transformation
+ logic, such that a record in the output typically corresponds to one
record in the input. In
+ contrast, an AlgoOperator is a better fit to express aggregation logic
where a record in the
+ output could be computed from an arbitrary number of records in the input.
+ """
+ pass
+
+
+class Model(Transformer[T], ABC):
+ """
+ A Model is typically generated by invoking :func:`~Estimator.fit`. A Model
is a Transformer with
+ the extra APIs to set and get model data.
+ """
+
+ def set_model_data(self, *inputs: Table) -> None:
+ raise Exception("This operation is not supported.")
+
+ def get_model_data(self) -> None:
+ """
+ Gets a list of tables representing the model data. Each table could be
an unbounded stream
+ of model data changes.
+
+ :return: A list of tables.
+ """
+ raise Exception("This operation is not supported.")
+
+
+class Estimator(Generic[E, M], Stage[E], ABC):
+ """
+ Estimators are responsible for training and generating Models.
+ """
+
+ def fit(self, *inputs: Table) -> Model[M]:
+ """
+ Trains on the given inputs and produces a Model.
+
+ :param inputs: A list of tables.
+ :return: A Model.
+ """
+ pass
+
+
+class PipelineModel(Model):
+ """
+ A PipelineModel acts as a Model. It consists of an ordered list of stages,
each of which could
+ be a Model, Transformer or AlgoOperator.
+ """
+
+ def __init__(self, stages: List[Stage]):
+ self._stages = stages
+
+ def transform(self, *inputs: Table) -> List[Table]:
+ """
+ Applies all stages in this PipelineModel on the input tables in order.
The output of one
+ stage is used as the input of the next stage (if any). The output of
the last stage is
+ returned as the result of this method.
+
+ :param inputs: A list of tables.
+ :return: A list of tables.
+ """
+ for stage in self._stages:
+ if isinstance(stage, AlgoOperator):
+ inputs = stage.transform(*inputs)
+ else:
+ raise TypeError(f"The stage {stage} must be an AlgoOperator.")
+ return list(inputs)
+
+ def save(self, path: str) -> None:
+ from apache_flink_ml.ml.util import read_write_utils
+ read_write_utils.save_pipeline(self, self._stages, path)
+
+ @classmethod
+ def load(cls, env: StreamExecutionEnvironment, path: str) ->
'PipelineModel':
+ from apache_flink_ml.ml.util import read_write_utils
+ return PipelineModel(read_write_utils.load_pipeline(env, path))
+
+ def get_param_map(self):
+ return {}
+
+
+class Pipeline(Estimator[E, PipelineModel]):
+ """
+ A Pipeline acts as an Estimator. It consists of an ordered list of stages,
each of which could
+ be an Estimator, Model, Transformer or AlgoOperator.
+ """
+
+ def __init__(self, stages: List[Stage]):
+ self._stages = stages
+
+ def fit(self, *inputs: Table) -> PipelineModel:
+ """
+ Trains the pipeline to fit on the given tables.
+
+ This method goes through all stages of this pipeline in order and does
the following on
+ each stage until the last Estimator (inclusive).
+
+ <ul>
+ <li> If a stage is an Estimator, invoke :func:`~Estimator.fit`
with the input
+ tables to generate a Model. And if there is Estimator after
this stage, transform
+ the input tables using the generated Model to get result
tables, then pass the
+ result tables to the next stage as inputs.
+ <li> If a stage is an AlgoOperator AND there is Estimator after
this stage, transform
+ the input tables using this stage to get result tables, then
pass the result tables
+ to the next stage as inputs.
+ </ul>
+
+ After all the Estimators are trained to fit their input tables, a new
PipelineModel will
+ be created with the same stages in this pipeline, except that all the
Estimators in the
+ PipelineModel are replaced with the models generated in the above
process.
+
+ :param inputs: A list of tables.
+ :return: A PipelineModel.
+ """
+ last_estimator_idx = -1
+ for i, stage in enumerate(self._stages):
+ if isinstance(stage, Estimator):
+ last_estimator_idx = i
+
+ model_stages = []
+ last_inputs = inputs
+ for i, stage in enumerate(self._stages):
+ if not isinstance(stage, AlgoOperator):
Review comment:
Do we need this check?
##########
File path: flink-ml-python/setup.py
##########
@@ -0,0 +1,135 @@
+################################################################################
+# Licensed to the Apache Software Foundation (ASF) under one
+# or more contributor license agreements. See the NOTICE file
+# distributed with this work for additional information
+# regarding copyright ownership. The ASF licenses this file
+# to you under the Apache License, Version 2.0 (the
+# "License"); you may not use this file except in compliance
+# with the License. You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+################################################################################
+import io
+import os
+import sys
+from shutil import copytree, copy, rmtree
+
+from setuptools import setup
+
+if sys.version_info < (3, 6):
+ print("Python versions prior to 3.6 are not supported for Flink ML.",
+ file=sys.stderr)
+ sys.exit(-1)
+
+
+def remove_if_exists(file_path):
+ if os.path.exists(file_path):
+ if os.path.islink(file_path) or os.path.isfile(file_path):
+ os.remove(file_path)
+ else:
+ assert os.path.isdir(file_path)
+ rmtree(file_path)
+
+
+this_directory = os.path.abspath(os.path.dirname(__file__))
+version_file = os.path.join(this_directory, 'apache_flink_ml/version.py')
+
+try:
+ exec(open(version_file).read())
+except IOError:
+ print("Failed to load Flink ML version file for packaging. " +
+ "'%s' not found!" % version_file,
+ file=sys.stderr)
+ sys.exit(-1)
+VERSION = __version__ # noqa
+
+with io.open(os.path.join(this_directory, 'README.md'), 'r', encoding='utf-8')
as f:
+ long_description = f.read()
+
+TEMP_PATH = "deps"
+
+EXAMPLES_TEMP_PATH = os.path.join(TEMP_PATH, "examples")
+SCRIPTS_TEMP_PATH = os.path.join(TEMP_PATH, "bin")
+
+LICENSE_FILE_TEMP_PATH = os.path.join('apache_flink_ml', "LICENSE")
+README_FILE_TEMP_PATH = os.path.join("apache_flink_ml", "README.txt")
+
+in_flink_ml_source =
os.path.isfile("../flink-ml-api/src/main/java/org/apache/flink/ml/api/core/"
+ "Stage.java")
+try:
+ if in_flink_ml_source:
+
+ try:
+ os.mkdir(TEMP_PATH)
+ except:
+ print("Temp path for symlink to parent already exists
{0}".format(TEMP_PATH),
+ file=sys.stderr)
+ sys.exit(-1)
+ flink_ml_version = VERSION.replace(".dev0", "-SNAPSHOT")
+ FLINK_ML_ROOT = os.path.abspath("..")
+
+ EXAMPLES_PATH = os.path.join(this_directory,
"apache_flink_ml/examples")
+
+ LICENSE_FILE_PATH = os.path.join(FLINK_ML_ROOT, "LICENSE")
+ README_FILE_PATH = os.path.join(FLINK_ML_ROOT, "README.md")
+
+ try:
+ os.symlink(EXAMPLES_PATH, EXAMPLES_TEMP_PATH)
+ os.symlink(LICENSE_FILE_PATH, LICENSE_FILE_TEMP_PATH)
+ os.symlink(README_FILE_PATH, README_FILE_TEMP_PATH)
+ except BaseException: # pylint: disable=broad-except
+ copytree(EXAMPLES_PATH, EXAMPLES_TEMP_PATH)
+ copy(LICENSE_FILE_PATH, LICENSE_FILE_TEMP_PATH)
+ copy(README_FILE_PATH, README_FILE_TEMP_PATH)
+
+ PACKAGES = ['apache_flink_ml',
+ 'apache_flink_ml.ml',
+ 'apache_flink_ml.ml.api',
+ 'apache_flink_ml.ml.param',
+ 'apache_flink_ml.ml.util',
+ 'apache_flink_ml.examples',
+ 'apache_flink_ml.mllib']
Review comment:
It seems that `apache_flink_ml.ml.lib` would be more consistent with
other package names?
##########
File path: flink-ml-python/apache_flink_ml/ml/tests/test_stage.py
##########
@@ -0,0 +1,211 @@
+################################################################################
+# Licensed to the Apache Software Foundation (ASF) under one
+# or more contributor license agreements. See the NOTICE file
+# distributed with this work for additional information
+# regarding copyright ownership. The ASF licenses this file
+# to you under the Apache License, Version 2.0 (the
+# "License"); you may not use this file except in compliance
+# with the License. You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+################################################################################
+import os
+import shutil
+import tempfile
+import unittest
+from typing import Dict, Any
+
+from pyflink.datastream import StreamExecutionEnvironment
+from pyflink.table import StreamTableEnvironment
+
+from apache_flink_ml.ml.api.core import T, Stage
+from apache_flink_ml.ml.param.param import ParamValidators, Param,
BooleanParam, IntParam, \
+ FloatParam, StringParam, IntArrayParam, FloatArrayParam, StringArrayParam
+
+BOOLEAN_PARAM = BooleanParam("boolean_param", "Description", False)
+INT_PARAM = IntParam("int_param", "Description", 1, ParamValidators.lt(100))
+FLOAT_PARAM = FloatParam("float_param", "Description", 3.0,
ParamValidators.lt(100))
+STRING_PARAM = StringParam('string_param', "Description", "5")
+INT_ARRAY_PARAM = IntArrayParam("int_array_param", "Description", [6, 7])
+FLOAT_ARRAY_PARAM = FloatArrayParam("float_array_param", "Description", [10.0,
11.0])
+STRING_ARRAY_PARAM = StringArrayParam("string_array_param", "Description",
["14", "15"])
+EXTRA_INT_PARAM = IntParam("extra_int_param",
+ "Description",
+ 20,
+ ParamValidators.always_true())
+PARAM_WITH_NONE_DEFAULT = IntParam("param_with_none_default",
+ "Must be explicitly set with a non-none
value",
+ None,
+ ParamValidators.not_null())
+
+
+class StageTest(unittest.TestCase):
+ def setUp(self):
+ self.env = StreamExecutionEnvironment.get_execution_environment()
+ self.t_env = StreamTableEnvironment.create(self.env)
+
self.t_env.get_config().get_configuration().set_string("parallelism.default",
"2")
+ self.temp_dir = tempfile.mkdtemp()
+
+ def tearDown(self) -> None:
+ shutil.rmtree(self.temp_dir, ignore_errors=True)
+
+ def test_param_set_value_with_name(self):
+ stage = MyStage()
+ stage.set(INT_PARAM, 2)
+ self.assertEqual(2, stage.get(INT_PARAM))
+
+ param = stage.get_param("int_param")
+ stage.set(param, 3)
+ self.assertEqual(3, stage.get(param))
+
+ param = stage.get_param('extra_int_param')
+ stage.set(param, 50)
+ self.assertEqual(50, stage.get(param))
+
+ def test_param_with_null_default(self):
+ stage = MyStage()
+ import pytest
+ with pytest.raises(ValueError, match='value should not be None'):
+ stage.get(PARAM_WITH_NONE_DEFAULT)
+
+ stage.set(PARAM_WITH_NONE_DEFAULT, 3)
+ self.assertEqual(3, stage.get(PARAM_WITH_NONE_DEFAULT))
+
+ def test_param_set_invalid_value(self):
+ stage = MyStage()
+ import pytest
+
+ with pytest.raises(ValueError, match='Parameter int_param is given an
invalid value 100.'):
+ stage.set(INT_PARAM, 100)
+
+ with pytest.raises(ValueError,
+ match='Parameter float_param is given an invalid
value 100.0.'):
+ stage.set(FLOAT_PARAM, 100.0)
+
+ with pytest.raises(TypeError,
+ match="Parameter int_param's type <class 'int'> is
incompatible with "
+ "the type of <class 'str'>"):
+ stage.set(INT_PARAM, "100")
+
+ with pytest.raises(TypeError,
+ match="Parameter string_param's type <class 'str'>
is incompatible with"
+ " the type of <class 'int'>"):
+ stage.set(STRING_PARAM, 100)
+
+ def test_param_set_valid_value(self):
+ stage = MyStage()
+
+ stage.set(BOOLEAN_PARAM, True)
+ self.assertTrue(stage.get(BOOLEAN_PARAM))
+
+ stage.set(INT_PARAM, 50)
+ self.assertEqual(50, stage.get(INT_PARAM))
+
+ stage.set(FLOAT_PARAM, 50.0)
+ self.assertEqual(50.0, stage.get(FLOAT_PARAM))
+
+ stage.set(STRING_PARAM, "50")
+ self.assertEqual("50", stage.get(STRING_PARAM))
+
+ stage.set(INT_ARRAY_PARAM, [50, 51])
+ self.assertEqual([50, 51], stage.get(INT_ARRAY_PARAM))
+
+ stage.set(FLOAT_ARRAY_PARAM, [50.0, 51.0])
+ self.assertEqual([50.0, 51.0], stage.get(FLOAT_ARRAY_PARAM))
+
+ stage.set(STRING_ARRAY_PARAM, ["50", "51"])
+ self.assertEqual(["50", "51"], stage.get(STRING_ARRAY_PARAM))
+
+ def test_stage_save_load(self):
+ stage = MyStage()
+ stage.set(PARAM_WITH_NONE_DEFAULT, 1)
+ path = os.path.join(self.temp_dir, "test_stage_save_load")
+ stage.save(path)
+ loaded_stage = MyStage.load(self.env, path)
+ self.assertEqual(stage.get_param_map(), loaded_stage.get_param_map())
+ self.assertEqual(1, loaded_stage.get(INT_PARAM))
+
+ def test_validators(self):
+ gt = ParamValidators.gt(10)
+ self.assertFalse(gt.validate(None))
+ self.assertFalse(gt.validate(5))
+ self.assertFalse(gt.validate(10))
+ self.assertTrue(gt.validate(15))
+
+ gt_eq = ParamValidators.gt_eq(10)
+ self.assertFalse(gt_eq.validate(None))
+ self.assertFalse(gt_eq.validate(5))
+ self.assertTrue(gt_eq.validate(10))
+ self.assertTrue(gt_eq.validate(15))
+
+ lt = ParamValidators.lt(10)
+ self.assertFalse(lt.validate(None))
+ self.assertTrue(lt.validate(5))
+ self.assertFalse(lt.validate(10))
+ self.assertFalse(lt.validate(15))
+
+ lt_eq = ParamValidators.lt_eq(10)
+ self.assertFalse(lt_eq.validate(None))
+ self.assertTrue(lt_eq.validate(5))
+ self.assertTrue(lt_eq.validate(10))
+ self.assertFalse(lt_eq.validate(15))
+
+ in_range_inclusive = ParamValidators.in_range(5, 15)
+ self.assertFalse(in_range_inclusive.validate(None))
+ self.assertFalse(in_range_inclusive.validate(0))
+ self.assertTrue(in_range_inclusive.validate(5))
+ self.assertTrue(in_range_inclusive.validate(10))
+ self.assertTrue(in_range_inclusive.validate(15))
+ self.assertFalse(in_range_inclusive.validate(20))
+
+ in_range_exclusive = ParamValidators.in_range(5, 15, False, False)
+ self.assertFalse(in_range_exclusive.validate(None))
+ self.assertFalse(in_range_exclusive.validate(0))
+ self.assertFalse(in_range_exclusive.validate(5))
+ self.assertTrue(in_range_exclusive.validate(10))
+ self.assertFalse(in_range_exclusive.validate(15))
+ self.assertFalse(in_range_exclusive.validate(20))
+
+ in_array = ParamValidators.in_array([1, 2, 3])
+ self.assertFalse(in_array.validate(None))
+ self.assertTrue(in_array.validate(1))
+ self.assertFalse(in_array.validate(0))
+
+ not_null = ParamValidators.not_null()
+ self.assertTrue(not_null.validate(5))
+ self.assertFalse(not_null.validate(None))
+
+
+class MyStage(Stage):
+ def __init__(self):
+ self._param_map = {} # type: Dict[Param, Any]
+ self._init_param()
+
+ def save(self, path: str) -> None:
+ from apache_flink_ml.ml.util import read_write_utils
+ read_write_utils.save_metadata(self, path)
+
+ @classmethod
+ def load(cls, env: StreamExecutionEnvironment, path: str) -> T:
+ from apache_flink_ml.ml.util import read_write_utils
+ return read_write_utils.load_stage_param(path)
+
+ def get_param_map(self) -> Dict['Param[Any]', Any]:
+ return self._param_map
+
+ def _init_param(self):
+ self._param_map[BOOLEAN_PARAM] = BOOLEAN_PARAM.default_value
Review comment:
Is there any way to initialize the param_map automatically without
requiring users to manually setup this map? This can be done in Java using
reflection (see `ParamUtils.initializeMapWithDefaultValues(...)`).
--
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
To unsubscribe, e-mail: [email protected]
For queries about this service, please contact Infrastructure at:
[email protected]