weibozhao commented on a change in pull request #24:
URL: https://github.com/apache/flink-ml/pull/24#discussion_r760919513



##########
File path: 
flink-ml-lib/src/main/java/org/apache/flink/ml/classification/knn/KnnModel.java
##########
@@ -0,0 +1,489 @@
+package org.apache.flink.ml.classification.knn;
+
+import org.apache.flink.api.common.eventtime.WatermarkStrategy;
+import org.apache.flink.api.common.functions.RichMapFunction;
+import org.apache.flink.api.common.typeinfo.TypeInformation;
+import org.apache.flink.api.connector.source.Source;
+import org.apache.flink.api.java.tuple.Tuple2;
+import org.apache.flink.api.java.typeutils.RowTypeInfo;
+import org.apache.flink.connector.file.sink.FileSink;
+import org.apache.flink.connector.file.src.FileSource;
+import org.apache.flink.core.fs.Path;
+import org.apache.flink.ml.api.Model;
+import org.apache.flink.ml.common.broadcast.BroadcastUtils;
+import org.apache.flink.ml.linalg.DenseMatrix;
+import org.apache.flink.ml.linalg.DenseVector;
+import org.apache.flink.ml.linalg.VectorUtils;
+import org.apache.flink.ml.param.Param;
+import org.apache.flink.ml.util.ParamUtils;
+import org.apache.flink.ml.util.ReadWriteUtils;
+import org.apache.flink.streaming.api.datastream.DataStream;
+import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
+import 
org.apache.flink.streaming.api.functions.sink.filesystem.bucketassigners.BasePathBucketAssigner;
+import 
org.apache.flink.streaming.api.functions.sink.filesystem.rollingpolicies.OnCheckpointRollingPolicy;
+import org.apache.flink.streaming.api.operators.AbstractUdfStreamOperator;
+import org.apache.flink.streaming.api.operators.OneInputStreamOperator;
+import org.apache.flink.streaming.runtime.streamrecord.StreamRecord;
+import org.apache.flink.table.api.DataTypes;
+import org.apache.flink.table.api.Schema;
+import org.apache.flink.table.api.Table;
+import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
+import org.apache.flink.table.api.internal.TableImpl;
+import org.apache.flink.table.catalog.ResolvedSchema;
+import org.apache.flink.table.types.DataType;
+import org.apache.flink.table.types.logical.utils.LogicalTypeParser;
+import org.apache.flink.table.types.utils.LogicalTypeDataTypeConverter;
+import org.apache.flink.types.Row;
+
+import org.apache.flink.shaded.curator4.com.google.common.collect.ImmutableMap;
+import 
org.apache.flink.shaded.jackson2.com.fasterxml.jackson.core.JsonProcessingException;
+
+import org.apache.commons.lang3.ArrayUtils;
+
+import java.io.IOException;
+import java.util.ArrayList;
+import java.util.Collections;
+import java.util.HashMap;
+import java.util.List;
+import java.util.Map;
+import java.util.PriorityQueue;
+import java.util.TreeMap;
+import java.util.function.Function;
+
+/** Knn classification model fitted by estimator. */
+public class KnnModel implements Model<KnnModel>, KnnParams<KnnModel> {
+    protected Map<Param<?>, Object> params = new HashMap<>();
+    private Table[] modelData;
+
+    /** constructor. */
+    public KnnModel() {
+        ParamUtils.initializeMapWithDefaultValues(params, this);
+    }
+
+    /**
+     * constructor.
+     *
+     * @param params parameters for algorithm.
+     */
+    public KnnModel(Map<Param<?>, Object> params) {
+        this.params = params;
+    }
+
+    /**
+     * Set model data for knn prediction.
+     *
+     * @param modelData knn model.
+     * @return knn model.
+     */
+    @Override
+    public KnnModel setModelData(Table... modelData) {
+        this.modelData = modelData;
+        return this;
+    }
+
+    /**
+     * get model data.
+     *
+     * @return list of tables.
+     */
+    @Override
+    public Table[] getModelData() {
+        return modelData;
+    }
+
+    /**
+     * @param inputs a list of tables.
+     * @return result.
+     */
+    @Override
+    public Table[] transform(Table... inputs) {
+        StreamTableEnvironment tEnv =
+                (StreamTableEnvironment) ((TableImpl) 
inputs[0]).getTableEnvironment();
+        DataStream<Row> input = tEnv.toDataStream(inputs[0]);
+        DataStream<Row> model = tEnv.toDataStream(modelData[0]);
+        final String BROADCAST_STR = "broadcastModelKey";
+        Map<String, DataStream<?>> broadcastMap = new HashMap<>(1);
+        broadcastMap.put(BROADCAST_STR, model);
+        ResolvedSchema modelSchema = modelData[0].getResolvedSchema();
+        DataType idType =
+                
modelSchema.getColumnDataTypes().get(modelSchema.getColumnNames().size() - 1);
+        String[] reservedCols =
+                inputs[0].getResolvedSchema().getColumnNames().toArray(new 
String[0]);
+        DataType[] reservedTypes =
+                inputs[0].getResolvedSchema().getColumnDataTypes().toArray(new 
DataType[0]);
+        String[] resultCols = new String[] {(String) 
params.get(KnnParams.PREDICTION_COL)};
+        DataType[] resultTypes = new DataType[] {idType};
+        ResolvedSchema outputSchema =
+                ResolvedSchema.physical(
+                        ArrayUtils.addAll(reservedCols, resultCols),
+                        ArrayUtils.addAll(reservedTypes, resultTypes));

Review comment:
       done 

##########
File path: 
flink-ml-lib/src/main/java/org/apache/flink/ml/classification/knn/KnnModel.java
##########
@@ -0,0 +1,489 @@
+package org.apache.flink.ml.classification.knn;
+
+import org.apache.flink.api.common.eventtime.WatermarkStrategy;
+import org.apache.flink.api.common.functions.RichMapFunction;
+import org.apache.flink.api.common.typeinfo.TypeInformation;
+import org.apache.flink.api.connector.source.Source;
+import org.apache.flink.api.java.tuple.Tuple2;
+import org.apache.flink.api.java.typeutils.RowTypeInfo;
+import org.apache.flink.connector.file.sink.FileSink;
+import org.apache.flink.connector.file.src.FileSource;
+import org.apache.flink.core.fs.Path;
+import org.apache.flink.ml.api.Model;
+import org.apache.flink.ml.common.broadcast.BroadcastUtils;
+import org.apache.flink.ml.linalg.DenseMatrix;
+import org.apache.flink.ml.linalg.DenseVector;
+import org.apache.flink.ml.linalg.VectorUtils;
+import org.apache.flink.ml.param.Param;
+import org.apache.flink.ml.util.ParamUtils;
+import org.apache.flink.ml.util.ReadWriteUtils;
+import org.apache.flink.streaming.api.datastream.DataStream;
+import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
+import 
org.apache.flink.streaming.api.functions.sink.filesystem.bucketassigners.BasePathBucketAssigner;
+import 
org.apache.flink.streaming.api.functions.sink.filesystem.rollingpolicies.OnCheckpointRollingPolicy;
+import org.apache.flink.streaming.api.operators.AbstractUdfStreamOperator;
+import org.apache.flink.streaming.api.operators.OneInputStreamOperator;
+import org.apache.flink.streaming.runtime.streamrecord.StreamRecord;
+import org.apache.flink.table.api.DataTypes;
+import org.apache.flink.table.api.Schema;
+import org.apache.flink.table.api.Table;
+import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
+import org.apache.flink.table.api.internal.TableImpl;
+import org.apache.flink.table.catalog.ResolvedSchema;
+import org.apache.flink.table.types.DataType;
+import org.apache.flink.table.types.logical.utils.LogicalTypeParser;
+import org.apache.flink.table.types.utils.LogicalTypeDataTypeConverter;
+import org.apache.flink.types.Row;
+
+import org.apache.flink.shaded.curator4.com.google.common.collect.ImmutableMap;
+import 
org.apache.flink.shaded.jackson2.com.fasterxml.jackson.core.JsonProcessingException;
+
+import org.apache.commons.lang3.ArrayUtils;
+
+import java.io.IOException;
+import java.util.ArrayList;
+import java.util.Collections;
+import java.util.HashMap;
+import java.util.List;
+import java.util.Map;
+import java.util.PriorityQueue;
+import java.util.TreeMap;
+import java.util.function.Function;
+
+/** Knn classification model fitted by estimator. */
+public class KnnModel implements Model<KnnModel>, KnnParams<KnnModel> {
+    protected Map<Param<?>, Object> params = new HashMap<>();
+    private Table[] modelData;
+
+    /** constructor. */
+    public KnnModel() {
+        ParamUtils.initializeMapWithDefaultValues(params, this);
+    }
+
+    /**
+     * constructor.
+     *
+     * @param params parameters for algorithm.
+     */
+    public KnnModel(Map<Param<?>, Object> params) {
+        this.params = params;
+    }
+
+    /**
+     * Set model data for knn prediction.
+     *
+     * @param modelData knn model.
+     * @return knn model.
+     */
+    @Override
+    public KnnModel setModelData(Table... modelData) {
+        this.modelData = modelData;
+        return this;
+    }
+
+    /**
+     * get model data.
+     *
+     * @return list of tables.
+     */
+    @Override
+    public Table[] getModelData() {
+        return modelData;
+    }
+
+    /**
+     * @param inputs a list of tables.
+     * @return result.
+     */
+    @Override
+    public Table[] transform(Table... inputs) {
+        StreamTableEnvironment tEnv =
+                (StreamTableEnvironment) ((TableImpl) 
inputs[0]).getTableEnvironment();
+        DataStream<Row> input = tEnv.toDataStream(inputs[0]);
+        DataStream<Row> model = tEnv.toDataStream(modelData[0]);
+        final String BROADCAST_STR = "broadcastModelKey";
+        Map<String, DataStream<?>> broadcastMap = new HashMap<>(1);
+        broadcastMap.put(BROADCAST_STR, model);
+        ResolvedSchema modelSchema = modelData[0].getResolvedSchema();
+        DataType idType =
+                
modelSchema.getColumnDataTypes().get(modelSchema.getColumnNames().size() - 1);
+        String[] reservedCols =
+                inputs[0].getResolvedSchema().getColumnNames().toArray(new 
String[0]);
+        DataType[] reservedTypes =
+                inputs[0].getResolvedSchema().getColumnDataTypes().toArray(new 
DataType[0]);
+        String[] resultCols = new String[] {(String) 
params.get(KnnParams.PREDICTION_COL)};
+        DataType[] resultTypes = new DataType[] {idType};
+        ResolvedSchema outputSchema =
+                ResolvedSchema.physical(
+                        ArrayUtils.addAll(reservedCols, resultCols),
+                        ArrayUtils.addAll(reservedTypes, resultTypes));
+
+        DataType[] dataTypes = outputSchema.getColumnDataTypes().toArray(new 
DataType[0]);
+        TypeInformation<?>[] typeInformations = new 
TypeInformation[dataTypes.length];
+
+        for (int i = 0; i < dataTypes.length; ++i) {
+            typeInformations[i] = 
TypeInformation.of(dataTypes[i].getLogicalType().getClass());
+        }
+
+        Function<List<DataStream<?>>, DataStream<Row>> function =
+                dataStreams -> {
+                    DataStream stream = dataStreams.get(0);
+                    return stream.transform(
+                            "mapFunc",
+                            new RowTypeInfo(
+                                    typeInformations,
+                                    outputSchema.getColumnNames().toArray(new 
String[0])),
+                            new PredictOperator(

Review comment:
       done




-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]


Reply via email to