[
https://issues.apache.org/jira/browse/FLINK-25883?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
]
Dian Fu closed FLINK-25883.
---------------------------
Fix Version/s: 1.15.0
1.12.8
1.13.6
1.14.4
Assignee: Dian Fu
Resolution: Fixed
Fixed in
- master via 26bde8bacbc9050ea1b1e2e4c739b8d21623443b
- release-1.14 via 77e65db61aeccb35a6015e74de3f647db796774c
- release-1.13 via f71cbb9a8a6349411a158ee0d9faf5253fa15d35
- release-1.12 via b1e7b892cc9241f568150135b8bcf7bcd9f0c125
> The value of DEFAULT_BUNDLE_PROCESSOR_CACHE_SHUTDOWN_THRESHOLD_S is too large
> ------------------------------------------------------------------------------
>
> Key: FLINK-25883
> URL: https://issues.apache.org/jira/browse/FLINK-25883
> Project: Flink
> Issue Type: Bug
> Environment: Windows, Python 3.8
> Reporter: Mikhail
> Assignee: Dian Fu
> Priority: Minor
> Fix For: 1.15.0, 1.12.8, 1.13.6, 1.14.4
>
>
> In [this
> line|https://github.com/apache/flink/blob/fb38c99a38c63ba8801e765887f955522072615a/flink-python/pyflink/fn_execution/beam/beam_sdk_worker_main.py#L30],
> the value of DEFAULT_BUNDLE_PROCESSOR_CACHE_SHUTDOWN_THRESHOLD_S is set to
> 3153600000. This is more than the default value of threading.TIMEOUT_MAX on
> Windows Python, which is 4294967. Due to this, "OverflowError: timeout value
> is too large" error is produced.
> Full traceback:
> {code:java}
> File
> "G:\PycharmProjects\PyFlink\venv_from_scratch\lib\site-packages\apache_beam\runners\worker\data_plane.py",
> line 218, in run
> while not self._finished.wait(next_call - time.time()):
> File "C:\Python38\lib\threading.py", line 558, in wait
> signaled = self._cond.wait(timeout)
> File "C:\Python38\lib\threading.py", line 306, in wait
> gotit = waiter.acquire(True, timeout)
> OverflowError: timeout value is too large{code}
--
This message was sent by Atlassian Jira
(v8.20.1#820001)