yunfengzhou-hub commented on a change in pull request #54: URL: https://github.com/apache/flink-ml/pull/54#discussion_r829632681
########## File path: flink-ml-lib/src/main/java/org/apache/flink/ml/feature/minmaxscaler/MinMaxScalerModel.java ########## @@ -0,0 +1,181 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one + * or more contributor license agreements. See the NOTICE file + * distributed with this work for additional information + * regarding copyright ownership. The ASF licenses this file + * to you under the Apache License, Version 2.0 (the + * "License"); you may not use this file except in compliance + * with the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.flink.ml.feature.minmaxscaler; + +import org.apache.flink.api.common.functions.RichMapFunction; +import org.apache.flink.api.java.typeutils.RowTypeInfo; +import org.apache.flink.ml.api.Model; +import org.apache.flink.ml.common.broadcast.BroadcastUtils; +import org.apache.flink.ml.common.datastream.TableUtils; +import org.apache.flink.ml.linalg.DenseVector; +import org.apache.flink.ml.param.Param; +import org.apache.flink.ml.util.ParamUtils; +import org.apache.flink.ml.util.ReadWriteUtils; +import org.apache.flink.streaming.api.datastream.DataStream; +import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; +import org.apache.flink.table.api.Table; +import org.apache.flink.table.api.bridge.java.StreamTableEnvironment; +import org.apache.flink.table.api.internal.TableImpl; +import org.apache.flink.table.runtime.typeutils.ExternalTypeInfo; +import org.apache.flink.types.Row; +import org.apache.flink.util.Preconditions; + +import org.apache.commons.lang3.ArrayUtils; + +import java.io.IOException; +import java.util.Collections; +import java.util.HashMap; +import java.util.Map; + +/** + * A Model which do a minMax scaler operation using the model data computed by {@link MinMaxScaler}. + */ +public class MinMaxScalerModel + implements Model<MinMaxScalerModel>, MinMaxScalerParams<MinMaxScalerModel> { + private final Map<Param<?>, Object> paramMap = new HashMap<>(); + private Table modelDataTable; + + public MinMaxScalerModel() { + ParamUtils.initializeMapWithDefaultValues(paramMap, this); + } + + @Override + public MinMaxScalerModel setModelData(Table... inputs) { + modelDataTable = inputs[0]; + return this; + } + + @Override + public Table[] getModelData() { + return new Table[] {modelDataTable}; + } + + @Override + @SuppressWarnings("unchecked") + public Table[] transform(Table... inputs) { + Preconditions.checkArgument(inputs.length == 1); + StreamTableEnvironment tEnv = + (StreamTableEnvironment) ((TableImpl) inputs[0]).getTableEnvironment(); + DataStream<Row> data = tEnv.toDataStream(inputs[0]); + DataStream<MinMaxScalerModelData> minMaxScalerModel = + MinMaxScalerModelData.getModelDataStream(modelDataTable); + final String broadcastModelKey = "broadcastModelKey"; + RowTypeInfo inputTypeInfo = TableUtils.getRowTypeInfo(inputs[0].getResolvedSchema()); + RowTypeInfo outputTypeInfo = + new RowTypeInfo( + ArrayUtils.addAll( + inputTypeInfo.getFieldTypes(), + ExternalTypeInfo.of(DenseVector.class)), + ArrayUtils.addAll(inputTypeInfo.getFieldNames(), getPredictionCol())); + DataStream<Row> output = + BroadcastUtils.withBroadcastStream( + Collections.singletonList(data), + Collections.singletonMap(broadcastModelKey, minMaxScalerModel), + inputList -> { + DataStream input = inputList.get(0); + return input.map( + new PredictOutputFunction( + broadcastModelKey, + getMax(), + getMin(), + getFeaturesCol()), + outputTypeInfo); + }); + return new Table[] {tEnv.fromDataStream(output)}; + } + + @Override + public Map<Param<?>, Object> getParamMap() { + return paramMap; + } + + @Override + public void save(String path) throws IOException { + ReadWriteUtils.saveMetadata(this, path); + ReadWriteUtils.saveModelData( + MinMaxScalerModelData.getModelDataStream(modelDataTable), + path, + new MinMaxScalerModelData.ModelDataEncoder()); + } + + /** + * Loads model data from path. + * + * @param env Stream execution environment. + * @param path Model path. + * @return MinMaxScalerModel model. + */ + public static MinMaxScalerModel load(StreamExecutionEnvironment env, String path) + throws IOException { + StreamTableEnvironment tEnv = StreamTableEnvironment.create(env); + MinMaxScalerModel model = ReadWriteUtils.loadStageParam(path); + DataStream<MinMaxScalerModelData> modelData = + ReadWriteUtils.loadModelData( + env, path, new MinMaxScalerModelData.ModelDataDecoder()); + return model.setModelData(tEnv.fromDataStream(modelData)); + } + + /** This operator loads model data and predicts result. */ + private static class PredictOutputFunction extends RichMapFunction<Row, Row> { + private final String featureCol; + private MinMaxScalerModelData minMaxScalerModelData; + private final double upperBound; + private final double lowerBound; + private final String broadcastKey; + private DenseVector maxVector; + private DenseVector minVector; + + public PredictOutputFunction( + String broadcastKey, double upperBound, double lowerBound, String featureCol) { + this.upperBound = upperBound; + this.lowerBound = lowerBound; + this.broadcastKey = broadcastKey; + this.featureCol = featureCol; + } + + @Override + public Row map(Row row) { + if (minMaxScalerModelData == null) { + minMaxScalerModelData = + (MinMaxScalerModelData) + getRuntimeContext().getBroadcastVariable(broadcastKey).get(0); + maxVector = minMaxScalerModelData.maxVector; + minVector = minMaxScalerModelData.minVector; + } + DenseVector feature = (DenseVector) row.getField(featureCol); + DenseVector outputVector = new DenseVector(maxVector.size()); + if (feature != null) { Review comment: Got it. If this is the case, then I think MinMaxScaler might not need this parameter either. What do you think of the other part of the question above? > if the feature vector exists, but its dimension is different from that of maxVector, or its max/min value exceeds maxVector/minVector's range, then maybe we should also throw exception. ########## File path: flink-ml-lib/src/main/java/org/apache/flink/ml/feature/minmaxscaler/MinMaxScalerModel.java ########## @@ -0,0 +1,181 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one + * or more contributor license agreements. See the NOTICE file + * distributed with this work for additional information + * regarding copyright ownership. The ASF licenses this file + * to you under the Apache License, Version 2.0 (the + * "License"); you may not use this file except in compliance + * with the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.flink.ml.feature.minmaxscaler; + +import org.apache.flink.api.common.functions.RichMapFunction; +import org.apache.flink.api.java.typeutils.RowTypeInfo; +import org.apache.flink.ml.api.Model; +import org.apache.flink.ml.common.broadcast.BroadcastUtils; +import org.apache.flink.ml.common.datastream.TableUtils; +import org.apache.flink.ml.linalg.DenseVector; +import org.apache.flink.ml.param.Param; +import org.apache.flink.ml.util.ParamUtils; +import org.apache.flink.ml.util.ReadWriteUtils; +import org.apache.flink.streaming.api.datastream.DataStream; +import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; +import org.apache.flink.table.api.Table; +import org.apache.flink.table.api.bridge.java.StreamTableEnvironment; +import org.apache.flink.table.api.internal.TableImpl; +import org.apache.flink.table.runtime.typeutils.ExternalTypeInfo; +import org.apache.flink.types.Row; +import org.apache.flink.util.Preconditions; + +import org.apache.commons.lang3.ArrayUtils; + +import java.io.IOException; +import java.util.Collections; +import java.util.HashMap; +import java.util.Map; + +/** + * A Model which do a minMax scaler operation using the model data computed by {@link MinMaxScaler}. + */ +public class MinMaxScalerModel + implements Model<MinMaxScalerModel>, MinMaxScalerParams<MinMaxScalerModel> { + private final Map<Param<?>, Object> paramMap = new HashMap<>(); + private Table modelDataTable; + + public MinMaxScalerModel() { + ParamUtils.initializeMapWithDefaultValues(paramMap, this); + } + + @Override + public MinMaxScalerModel setModelData(Table... inputs) { + modelDataTable = inputs[0]; + return this; + } + + @Override + public Table[] getModelData() { + return new Table[] {modelDataTable}; + } + + @Override + @SuppressWarnings("unchecked") + public Table[] transform(Table... inputs) { + Preconditions.checkArgument(inputs.length == 1); + StreamTableEnvironment tEnv = + (StreamTableEnvironment) ((TableImpl) inputs[0]).getTableEnvironment(); + DataStream<Row> data = tEnv.toDataStream(inputs[0]); + DataStream<MinMaxScalerModelData> minMaxScalerModel = + MinMaxScalerModelData.getModelDataStream(modelDataTable); + final String broadcastModelKey = "broadcastModelKey"; + RowTypeInfo inputTypeInfo = TableUtils.getRowTypeInfo(inputs[0].getResolvedSchema()); + RowTypeInfo outputTypeInfo = + new RowTypeInfo( + ArrayUtils.addAll( + inputTypeInfo.getFieldTypes(), + ExternalTypeInfo.of(DenseVector.class)), + ArrayUtils.addAll(inputTypeInfo.getFieldNames(), getPredictionCol())); + DataStream<Row> output = + BroadcastUtils.withBroadcastStream( + Collections.singletonList(data), + Collections.singletonMap(broadcastModelKey, minMaxScalerModel), + inputList -> { + DataStream input = inputList.get(0); + return input.map( + new PredictOutputFunction( + broadcastModelKey, + getMax(), + getMin(), + getFeaturesCol()), + outputTypeInfo); + }); + return new Table[] {tEnv.fromDataStream(output)}; + } + + @Override + public Map<Param<?>, Object> getParamMap() { + return paramMap; + } + + @Override + public void save(String path) throws IOException { + ReadWriteUtils.saveMetadata(this, path); + ReadWriteUtils.saveModelData( + MinMaxScalerModelData.getModelDataStream(modelDataTable), + path, + new MinMaxScalerModelData.ModelDataEncoder()); + } + + /** + * Loads model data from path. + * + * @param env Stream execution environment. + * @param path Model path. + * @return MinMaxScalerModel model. + */ + public static MinMaxScalerModel load(StreamExecutionEnvironment env, String path) + throws IOException { + StreamTableEnvironment tEnv = StreamTableEnvironment.create(env); + MinMaxScalerModel model = ReadWriteUtils.loadStageParam(path); + DataStream<MinMaxScalerModelData> modelData = + ReadWriteUtils.loadModelData( + env, path, new MinMaxScalerModelData.ModelDataDecoder()); + return model.setModelData(tEnv.fromDataStream(modelData)); + } + + /** This operator loads model data and predicts result. */ + private static class PredictOutputFunction extends RichMapFunction<Row, Row> { + private final String featureCol; + private MinMaxScalerModelData minMaxScalerModelData; + private final double upperBound; + private final double lowerBound; + private final String broadcastKey; + private DenseVector maxVector; + private DenseVector minVector; + + public PredictOutputFunction( + String broadcastKey, double upperBound, double lowerBound, String featureCol) { + this.upperBound = upperBound; + this.lowerBound = lowerBound; + this.broadcastKey = broadcastKey; + this.featureCol = featureCol; + } + + @Override + public Row map(Row row) { + if (minMaxScalerModelData == null) { + minMaxScalerModelData = + (MinMaxScalerModelData) + getRuntimeContext().getBroadcastVariable(broadcastKey).get(0); + maxVector = minMaxScalerModelData.maxVector; + minVector = minMaxScalerModelData.minVector; + } + DenseVector feature = (DenseVector) row.getField(featureCol); + DenseVector outputVector = new DenseVector(maxVector.size()); + if (feature != null) { + for (int i = 0; i < maxVector.size(); ++i) { + if ((minVector.values[i] - maxVector.values[i]) != 0.0) { + outputVector.values[i] = + (feature.values[i] - minVector.values[i]) + / (maxVector.values[i] - minVector.values[i]) Review comment: I'm not sure this is the case for Spark. In Spark's MinMaxScaler.scala I found the following code: ```scala values(i) = (values(i) - minArray(i)) * scaleArray(i) + minValue ``` which shows that Spark uses `minArray` and `scaleArray`, instead of `minArray` and `maxArray`. ########## File path: flink-ml-lib/src/test/java/org/apache/flink/ml/feature/MinMaxScalerTest.java ########## @@ -0,0 +1,208 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one + * or more contributor license agreements. See the NOTICE file + * distributed with this work for additional information + * regarding copyright ownership. The ASF licenses this file + * to you under the Apache License, Version 2.0 (the + * "License"); you may not use this file except in compliance + * with the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.flink.ml.feature; + +import org.apache.flink.api.common.functions.MapFunction; +import org.apache.flink.api.common.restartstrategy.RestartStrategies; +import org.apache.flink.configuration.Configuration; +import org.apache.flink.ml.feature.minmaxscaler.MinMaxScaler; +import org.apache.flink.ml.feature.minmaxscaler.MinMaxScalerModel; +import org.apache.flink.ml.feature.minmaxscaler.MinMaxScalerModelData; +import org.apache.flink.ml.linalg.DenseVector; +import org.apache.flink.ml.linalg.Vectors; +import org.apache.flink.ml.util.ReadWriteUtils; +import org.apache.flink.ml.util.StageTestUtils; +import org.apache.flink.streaming.api.datastream.DataStream; +import org.apache.flink.streaming.api.environment.ExecutionCheckpointingOptions; +import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; +import org.apache.flink.table.api.DataTypes; +import org.apache.flink.table.api.Schema; +import org.apache.flink.table.api.Table; +import org.apache.flink.table.api.bridge.java.StreamTableEnvironment; +import org.apache.flink.table.api.internal.TableImpl; +import org.apache.flink.types.Row; + +import org.apache.commons.collections.IteratorUtils; +import org.junit.Assert; +import org.junit.Before; +import org.junit.Rule; +import org.junit.Test; +import org.junit.rules.TemporaryFolder; + +import java.util.ArrayList; +import java.util.Arrays; +import java.util.Collections; +import java.util.List; + +import static org.junit.Assert.assertEquals; + +/** Tests {@link MinMaxScaler} and {@link MinMaxScalerModel}. */ +public class MinMaxScalerTest { + @Rule public final TemporaryFolder tempFolder = new TemporaryFolder(); + private StreamExecutionEnvironment env; + private StreamTableEnvironment tEnv; + private Table trainDataTable; + private Table predictDataTable; + private static final List<Row> trainData = + new ArrayList<>( + Arrays.asList( + Row.of(Vectors.dense(0.0, 3.0)), + Row.of(Vectors.dense(2.1, 0.0)), + Row.of(Vectors.dense(4.1, 5.1)), + Row.of(Vectors.dense(6.1, 8.1)), + Row.of(Vectors.dense(200, 300)))); + private static final List<Row> predictRows = + new ArrayList<>(Collections.singletonList(Row.of(Vectors.dense(150.0, 90.0)))); + + @Before + public void before() { + Configuration config = new Configuration(); + config.set(ExecutionCheckpointingOptions.ENABLE_CHECKPOINTS_AFTER_TASKS_FINISH, true); + env = StreamExecutionEnvironment.getExecutionEnvironment(config); + env.setParallelism(4); + env.enableCheckpointing(100); + env.setRestartStrategy(RestartStrategies.noRestart()); + tEnv = StreamTableEnvironment.create(env); + Schema schema = Schema.newBuilder().column("f0", DataTypes.of(DenseVector.class)).build(); + DataStream<Row> dataStream = env.fromCollection(trainData); + trainDataTable = tEnv.fromDataStream(dataStream, schema).as("features"); + DataStream<Row> predDataStream = env.fromCollection(predictRows); + predictDataTable = tEnv.fromDataStream(predDataStream, schema).as("features"); + } + + private static void verifyPredictionResult(Table output, String outputCol, DenseVector expected) + throws Exception { + StreamTableEnvironment tEnv = + (StreamTableEnvironment) ((TableImpl) output).getTableEnvironment(); + DataStream<DenseVector> stream = + tEnv.toDataStream(output) + .map( + (MapFunction<Row, DenseVector>) + row -> (DenseVector) row.getField(outputCol)); + List<DenseVector> result = IteratorUtils.toList(stream.executeAndCollect()); + assertEquals(1, result.size()); + assertEquals(expected, result.get(0)); + } + + @Test + public void testParam() { + MinMaxScaler minMaxScaler = new MinMaxScaler(); + assertEquals("features", minMaxScaler.getFeaturesCol()); + assertEquals(1.0, minMaxScaler.getMax(), 0.0001); + assertEquals(0.0, minMaxScaler.getMin(), 0.0001); + assertEquals("prediction", minMaxScaler.getPredictionCol()); + minMaxScaler + .setFeaturesCol("test_features") + .setMax(4.0) + .setMin(1.0) + .setPredictionCol("test_output"); + assertEquals("test_features", minMaxScaler.getFeaturesCol()); + assertEquals(1.0, minMaxScaler.getMin(), 0.0001); + assertEquals(4.0, minMaxScaler.getMax(), 0.0001); + assertEquals("test_output", minMaxScaler.getPredictionCol()); + } + + @Test + public void testFeaturePredictionParam() { + MinMaxScaler minMaxScaler = + new MinMaxScaler() + .setMin(1.0) + .setMax(4.0) + .setFeaturesCol("test_features") + .setPredictionCol("test_output"); + MinMaxScalerModel model = minMaxScaler.fit(trainDataTable.as("test_features")); + Table output = model.transform(predictDataTable.as("test_features"))[0]; + assertEquals( + Arrays.asList("test_features", "test_output"), + output.getResolvedSchema().getColumnNames()); + } + + @Test + public void testFewerDistinctPointsThanCluster() throws Exception { Review comment: KMeans is a clustering algorithm, so I understand that there is the concept of cluster. But in MinMaxScaler there is no such "cluster" thing. I think it would be more proper if we rename it to `testMinMaxEquals()`. ########## File path: flink-ml-lib/src/main/java/org/apache/flink/ml/feature/minmaxscaler/MinMaxScalerModel.java ########## @@ -0,0 +1,181 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one + * or more contributor license agreements. See the NOTICE file + * distributed with this work for additional information + * regarding copyright ownership. The ASF licenses this file + * to you under the Apache License, Version 2.0 (the + * "License"); you may not use this file except in compliance + * with the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.flink.ml.feature.minmaxscaler; + +import org.apache.flink.api.common.functions.RichMapFunction; +import org.apache.flink.api.java.typeutils.RowTypeInfo; +import org.apache.flink.ml.api.Model; +import org.apache.flink.ml.common.broadcast.BroadcastUtils; +import org.apache.flink.ml.common.datastream.TableUtils; +import org.apache.flink.ml.linalg.DenseVector; +import org.apache.flink.ml.param.Param; +import org.apache.flink.ml.util.ParamUtils; +import org.apache.flink.ml.util.ReadWriteUtils; +import org.apache.flink.streaming.api.datastream.DataStream; +import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; +import org.apache.flink.table.api.Table; +import org.apache.flink.table.api.bridge.java.StreamTableEnvironment; +import org.apache.flink.table.api.internal.TableImpl; +import org.apache.flink.table.runtime.typeutils.ExternalTypeInfo; +import org.apache.flink.types.Row; +import org.apache.flink.util.Preconditions; + +import org.apache.commons.lang3.ArrayUtils; + +import java.io.IOException; +import java.util.Collections; +import java.util.HashMap; +import java.util.Map; + +/** + * A Model which do a minMax scaler operation using the model data computed by {@link MinMaxScaler}. + */ +public class MinMaxScalerModel + implements Model<MinMaxScalerModel>, MinMaxScalerParams<MinMaxScalerModel> { + private final Map<Param<?>, Object> paramMap = new HashMap<>(); + private Table modelDataTable; + + public MinMaxScalerModel() { + ParamUtils.initializeMapWithDefaultValues(paramMap, this); + } + + @Override + public MinMaxScalerModel setModelData(Table... inputs) { + modelDataTable = inputs[0]; + return this; + } + + @Override + public Table[] getModelData() { + return new Table[] {modelDataTable}; + } + + @Override + @SuppressWarnings("unchecked") + public Table[] transform(Table... inputs) { + Preconditions.checkArgument(inputs.length == 1); + StreamTableEnvironment tEnv = + (StreamTableEnvironment) ((TableImpl) inputs[0]).getTableEnvironment(); + DataStream<Row> data = tEnv.toDataStream(inputs[0]); + DataStream<MinMaxScalerModelData> minMaxScalerModel = + MinMaxScalerModelData.getModelDataStream(modelDataTable); + final String broadcastModelKey = "broadcastModelKey"; + RowTypeInfo inputTypeInfo = TableUtils.getRowTypeInfo(inputs[0].getResolvedSchema()); + RowTypeInfo outputTypeInfo = + new RowTypeInfo( + ArrayUtils.addAll( + inputTypeInfo.getFieldTypes(), + ExternalTypeInfo.of(DenseVector.class)), + ArrayUtils.addAll(inputTypeInfo.getFieldNames(), getPredictionCol())); + DataStream<Row> output = + BroadcastUtils.withBroadcastStream( + Collections.singletonList(data), + Collections.singletonMap(broadcastModelKey, minMaxScalerModel), + inputList -> { + DataStream input = inputList.get(0); + return input.map( + new PredictOutputFunction( + broadcastModelKey, + getMax(), + getMin(), + getFeaturesCol()), + outputTypeInfo); + }); + return new Table[] {tEnv.fromDataStream(output)}; + } + + @Override + public Map<Param<?>, Object> getParamMap() { + return paramMap; + } + + @Override + public void save(String path) throws IOException { + ReadWriteUtils.saveMetadata(this, path); + ReadWriteUtils.saveModelData( + MinMaxScalerModelData.getModelDataStream(modelDataTable), + path, + new MinMaxScalerModelData.ModelDataEncoder()); + } + + /** + * Loads model data from path. + * + * @param env Stream execution environment. + * @param path Model path. + * @return MinMaxScalerModel model. + */ + public static MinMaxScalerModel load(StreamExecutionEnvironment env, String path) + throws IOException { + StreamTableEnvironment tEnv = StreamTableEnvironment.create(env); + MinMaxScalerModel model = ReadWriteUtils.loadStageParam(path); + DataStream<MinMaxScalerModelData> modelData = + ReadWriteUtils.loadModelData( + env, path, new MinMaxScalerModelData.ModelDataDecoder()); + return model.setModelData(tEnv.fromDataStream(modelData)); + } + + /** This operator loads model data and predicts result. */ + private static class PredictOutputFunction extends RichMapFunction<Row, Row> { + private final String featureCol; + private MinMaxScalerModelData minMaxScalerModelData; + private final double upperBound; + private final double lowerBound; + private final String broadcastKey; + private DenseVector maxVector; + private DenseVector minVector; + + public PredictOutputFunction( + String broadcastKey, double upperBound, double lowerBound, String featureCol) { + this.upperBound = upperBound; + this.lowerBound = lowerBound; + this.broadcastKey = broadcastKey; + this.featureCol = featureCol; + } + + @Override + public Row map(Row row) { + if (minMaxScalerModelData == null) { + minMaxScalerModelData = + (MinMaxScalerModelData) + getRuntimeContext().getBroadcastVariable(broadcastKey).get(0); + maxVector = minMaxScalerModelData.maxVector; + minVector = minMaxScalerModelData.minVector; + } + DenseVector feature = (DenseVector) row.getField(featureCol); + DenseVector outputVector = new DenseVector(maxVector.size()); + if (feature != null) { + for (int i = 0; i < maxVector.size(); ++i) { Review comment: Just for this code, I think there is a simple way to do the max == min judgement just once, like follows. ```java public Row map(Row row) { if (minMaxScalerModelData == null) { minMaxScalerModelData = (MinMaxScalerModelData) getRuntimeContext().getBroadcastVariable(broadcastKey).get(0); maxVector = minMaxScalerModelData.maxVector; minVector = minMaxScalerModelData.minVector; for (int i = 0; i < maxVector.size(); ++i) { if ((minVector.values[i] - maxVector.values[i]) == 0.0) { maxVector.values[i] = maxVector.values[i] + 1.0; minVector.values[i] = minVector.values[i] - 1.0; } } } DenseVector feature = (DenseVector) row.getField(featureCol); DenseVector outputVector = new DenseVector(maxVector.size()); if (feature != null) { for (int i = 0; i < maxVector.size(); ++i) { outputVector.values[i] = (feature.values[i] - minVector.values[i]) / (maxVector.values[i] - minVector.values[i]) * (upperBound - lowerBound) + lowerBound; } return Row.join(row, Row.of(outputVector)); } else { throw new RuntimeException("Feature value is null, please check your input data."); } } ``` With this code, now it is possible to apply BLAS operations. I noticed that Spark also uses for loop in this and the situation above, so I agree that we may postpone any further optimizations like this after this PR. ########## File path: flink-ml-lib/src/main/java/org/apache/flink/ml/feature/minmaxscaler/MinMaxScalerModel.java ########## @@ -0,0 +1,181 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one + * or more contributor license agreements. See the NOTICE file + * distributed with this work for additional information + * regarding copyright ownership. The ASF licenses this file + * to you under the Apache License, Version 2.0 (the + * "License"); you may not use this file except in compliance + * with the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.flink.ml.feature.minmaxscaler; + +import org.apache.flink.api.common.functions.RichMapFunction; +import org.apache.flink.api.java.typeutils.RowTypeInfo; +import org.apache.flink.ml.api.Model; +import org.apache.flink.ml.common.broadcast.BroadcastUtils; +import org.apache.flink.ml.common.datastream.TableUtils; +import org.apache.flink.ml.linalg.DenseVector; +import org.apache.flink.ml.param.Param; +import org.apache.flink.ml.util.ParamUtils; +import org.apache.flink.ml.util.ReadWriteUtils; +import org.apache.flink.streaming.api.datastream.DataStream; +import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; +import org.apache.flink.table.api.Table; +import org.apache.flink.table.api.bridge.java.StreamTableEnvironment; +import org.apache.flink.table.api.internal.TableImpl; +import org.apache.flink.table.runtime.typeutils.ExternalTypeInfo; +import org.apache.flink.types.Row; +import org.apache.flink.util.Preconditions; + +import org.apache.commons.lang3.ArrayUtils; + +import java.io.IOException; +import java.util.Collections; +import java.util.HashMap; +import java.util.Map; + +/** + * A Model which do a minMax scaler operation using the model data computed by {@link MinMaxScaler}. + */ +public class MinMaxScalerModel + implements Model<MinMaxScalerModel>, MinMaxScalerParams<MinMaxScalerModel> { + private final Map<Param<?>, Object> paramMap = new HashMap<>(); + private Table modelDataTable; + + public MinMaxScalerModel() { + ParamUtils.initializeMapWithDefaultValues(paramMap, this); + } + + @Override + public MinMaxScalerModel setModelData(Table... inputs) { + modelDataTable = inputs[0]; + return this; + } + + @Override + public Table[] getModelData() { + return new Table[] {modelDataTable}; + } + + @Override + @SuppressWarnings("unchecked") + public Table[] transform(Table... inputs) { + Preconditions.checkArgument(inputs.length == 1); + StreamTableEnvironment tEnv = + (StreamTableEnvironment) ((TableImpl) inputs[0]).getTableEnvironment(); + DataStream<Row> data = tEnv.toDataStream(inputs[0]); + DataStream<MinMaxScalerModelData> minMaxScalerModel = + MinMaxScalerModelData.getModelDataStream(modelDataTable); + final String broadcastModelKey = "broadcastModelKey"; + RowTypeInfo inputTypeInfo = TableUtils.getRowTypeInfo(inputs[0].getResolvedSchema()); + RowTypeInfo outputTypeInfo = + new RowTypeInfo( + ArrayUtils.addAll( + inputTypeInfo.getFieldTypes(), + ExternalTypeInfo.of(DenseVector.class)), + ArrayUtils.addAll(inputTypeInfo.getFieldNames(), getPredictionCol())); + DataStream<Row> output = + BroadcastUtils.withBroadcastStream( + Collections.singletonList(data), + Collections.singletonMap(broadcastModelKey, minMaxScalerModel), + inputList -> { + DataStream input = inputList.get(0); + return input.map( + new PredictOutputFunction( + broadcastModelKey, + getMax(), + getMin(), + getFeaturesCol()), + outputTypeInfo); + }); + return new Table[] {tEnv.fromDataStream(output)}; + } + + @Override + public Map<Param<?>, Object> getParamMap() { + return paramMap; + } + + @Override + public void save(String path) throws IOException { + ReadWriteUtils.saveMetadata(this, path); + ReadWriteUtils.saveModelData( + MinMaxScalerModelData.getModelDataStream(modelDataTable), + path, + new MinMaxScalerModelData.ModelDataEncoder()); + } + + /** + * Loads model data from path. + * + * @param env Stream execution environment. + * @param path Model path. + * @return MinMaxScalerModel model. + */ + public static MinMaxScalerModel load(StreamExecutionEnvironment env, String path) + throws IOException { + StreamTableEnvironment tEnv = StreamTableEnvironment.create(env); + MinMaxScalerModel model = ReadWriteUtils.loadStageParam(path); + DataStream<MinMaxScalerModelData> modelData = + ReadWriteUtils.loadModelData( + env, path, new MinMaxScalerModelData.ModelDataDecoder()); + return model.setModelData(tEnv.fromDataStream(modelData)); + } + + /** This operator loads model data and predicts result. */ + private static class PredictOutputFunction extends RichMapFunction<Row, Row> { + private final String featureCol; + private MinMaxScalerModelData minMaxScalerModelData; + private final double upperBound; + private final double lowerBound; + private final String broadcastKey; + private DenseVector maxVector; + private DenseVector minVector; + + public PredictOutputFunction( + String broadcastKey, double upperBound, double lowerBound, String featureCol) { + this.upperBound = upperBound; + this.lowerBound = lowerBound; + this.broadcastKey = broadcastKey; + this.featureCol = featureCol; + } + + @Override + public Row map(Row row) { + if (minMaxScalerModelData == null) { + minMaxScalerModelData = + (MinMaxScalerModelData) + getRuntimeContext().getBroadcastVariable(broadcastKey).get(0); + maxVector = minMaxScalerModelData.maxVector; + minVector = minMaxScalerModelData.minVector; + } + DenseVector feature = (DenseVector) row.getField(featureCol); + DenseVector outputVector = new DenseVector(maxVector.size()); + if (feature != null) { + for (int i = 0; i < maxVector.size(); ++i) { Review comment: > if the feature vector exists, but its dimension is different from that of maxVector, or its max/min value exceeds maxVector/minVector's range, then maybe we should also throw exception. If `featureValue[i] != maxVector[i]`, the input data would have violated the rule above and would throw exceptions. So there would be no result generated in both cases, right? From this, I think we should also add tests about illegal inputs, like `OneHotEncoderTest.testNonIndexedPredictData`. ########## File path: flink-ml-lib/src/main/java/org/apache/flink/ml/feature/minmaxscaler/MinMaxScalerModel.java ########## @@ -0,0 +1,181 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one + * or more contributor license agreements. See the NOTICE file + * distributed with this work for additional information + * regarding copyright ownership. The ASF licenses this file + * to you under the Apache License, Version 2.0 (the + * "License"); you may not use this file except in compliance + * with the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.flink.ml.feature.minmaxscaler; + +import org.apache.flink.api.common.functions.RichMapFunction; +import org.apache.flink.api.java.typeutils.RowTypeInfo; +import org.apache.flink.ml.api.Model; +import org.apache.flink.ml.common.broadcast.BroadcastUtils; +import org.apache.flink.ml.common.datastream.TableUtils; +import org.apache.flink.ml.linalg.DenseVector; +import org.apache.flink.ml.param.Param; +import org.apache.flink.ml.util.ParamUtils; +import org.apache.flink.ml.util.ReadWriteUtils; +import org.apache.flink.streaming.api.datastream.DataStream; +import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; +import org.apache.flink.table.api.Table; +import org.apache.flink.table.api.bridge.java.StreamTableEnvironment; +import org.apache.flink.table.api.internal.TableImpl; +import org.apache.flink.table.runtime.typeutils.ExternalTypeInfo; +import org.apache.flink.types.Row; +import org.apache.flink.util.Preconditions; + +import org.apache.commons.lang3.ArrayUtils; + +import java.io.IOException; +import java.util.Collections; +import java.util.HashMap; +import java.util.Map; + +/** + * A Model which do a minMax scaler operation using the model data computed by {@link MinMaxScaler}. + */ +public class MinMaxScalerModel + implements Model<MinMaxScalerModel>, MinMaxScalerParams<MinMaxScalerModel> { + private final Map<Param<?>, Object> paramMap = new HashMap<>(); + private Table modelDataTable; + + public MinMaxScalerModel() { + ParamUtils.initializeMapWithDefaultValues(paramMap, this); + } + + @Override + public MinMaxScalerModel setModelData(Table... inputs) { + modelDataTable = inputs[0]; + return this; + } + + @Override + public Table[] getModelData() { + return new Table[] {modelDataTable}; + } + + @Override + @SuppressWarnings("unchecked") + public Table[] transform(Table... inputs) { + Preconditions.checkArgument(inputs.length == 1); + StreamTableEnvironment tEnv = + (StreamTableEnvironment) ((TableImpl) inputs[0]).getTableEnvironment(); + DataStream<Row> data = tEnv.toDataStream(inputs[0]); + DataStream<MinMaxScalerModelData> minMaxScalerModel = + MinMaxScalerModelData.getModelDataStream(modelDataTable); + final String broadcastModelKey = "broadcastModelKey"; + RowTypeInfo inputTypeInfo = TableUtils.getRowTypeInfo(inputs[0].getResolvedSchema()); + RowTypeInfo outputTypeInfo = + new RowTypeInfo( + ArrayUtils.addAll( + inputTypeInfo.getFieldTypes(), + ExternalTypeInfo.of(DenseVector.class)), + ArrayUtils.addAll(inputTypeInfo.getFieldNames(), getPredictionCol())); + DataStream<Row> output = + BroadcastUtils.withBroadcastStream( + Collections.singletonList(data), + Collections.singletonMap(broadcastModelKey, minMaxScalerModel), + inputList -> { + DataStream input = inputList.get(0); + return input.map( + new PredictOutputFunction( + broadcastModelKey, + getMax(), + getMin(), + getFeaturesCol()), + outputTypeInfo); + }); + return new Table[] {tEnv.fromDataStream(output)}; + } + + @Override + public Map<Param<?>, Object> getParamMap() { + return paramMap; + } + + @Override + public void save(String path) throws IOException { + ReadWriteUtils.saveMetadata(this, path); + ReadWriteUtils.saveModelData( + MinMaxScalerModelData.getModelDataStream(modelDataTable), + path, + new MinMaxScalerModelData.ModelDataEncoder()); + } + + /** + * Loads model data from path. + * + * @param env Stream execution environment. + * @param path Model path. + * @return MinMaxScalerModel model. + */ + public static MinMaxScalerModel load(StreamExecutionEnvironment env, String path) + throws IOException { + StreamTableEnvironment tEnv = StreamTableEnvironment.create(env); + MinMaxScalerModel model = ReadWriteUtils.loadStageParam(path); + DataStream<MinMaxScalerModelData> modelData = + ReadWriteUtils.loadModelData( + env, path, new MinMaxScalerModelData.ModelDataDecoder()); + return model.setModelData(tEnv.fromDataStream(modelData)); + } + + /** This operator loads model data and predicts result. */ + private static class PredictOutputFunction extends RichMapFunction<Row, Row> { + private final String featureCol; + private MinMaxScalerModelData minMaxScalerModelData; + private final double upperBound; + private final double lowerBound; + private final String broadcastKey; + private DenseVector maxVector; + private DenseVector minVector; + + public PredictOutputFunction( + String broadcastKey, double upperBound, double lowerBound, String featureCol) { + this.upperBound = upperBound; + this.lowerBound = lowerBound; + this.broadcastKey = broadcastKey; + this.featureCol = featureCol; + } + + @Override + public Row map(Row row) { + if (minMaxScalerModelData == null) { + minMaxScalerModelData = + (MinMaxScalerModelData) + getRuntimeContext().getBroadcastVariable(broadcastKey).get(0); + maxVector = minMaxScalerModelData.maxVector; + minVector = minMaxScalerModelData.minVector; + } + DenseVector feature = (DenseVector) row.getField(featureCol); + DenseVector outputVector = new DenseVector(maxVector.size()); + if (feature != null) { + for (int i = 0; i < maxVector.size(); ++i) { Review comment: Got it. Then how about this one? ```java @Override public Row map(Row row) { if (minMaxScalerModelData == null) { minMaxScalerModelData = (MinMaxScalerModelData) getRuntimeContext().getBroadcastVariable(broadcastKey).get(0); maxVector = minMaxScalerModelData.maxVector; minVector = minMaxScalerModelData.minVector; scaleVector = new DenseVector(minVector.size()); offsetVector = new DenseVector(minVector.size()); for (int i = 0; i < maxVector.size(); ++i) { if ((minVector.values[i] - maxVector.values[i]) == 0.0) { scaleVector.values[i] = Double.POSITIVE_INFINITY; offsetVector.values[i] = 0.5; } else { scaleVector.values[i] = maxVector.values[i] - minVector.values[i]; offsetVector.values[i] = 0.0; } } } DenseVector feature = (DenseVector) row.getField(featureCol); DenseVector outputVector = new DenseVector(maxVector.size()); if (feature != null) { for (int i = 0; i < maxVector.size(); ++i) { outputVector.values[i] = ((feature.values[i] - minVector.values[i]) / scaleVector.values[i] + offsetVector.values[i]) * (upperBound - lowerBound) + lowerBound; } return Row.join(row, Row.of(outputVector)); } else { throw new RuntimeException("Feature value is null, please check your input data."); } } ``` This code should meet the requirements without using if conditions. ########## File path: flink-ml-lib/src/main/java/org/apache/flink/ml/feature/minmaxscaler/MinMaxScalerModel.java ########## @@ -0,0 +1,181 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one + * or more contributor license agreements. See the NOTICE file + * distributed with this work for additional information + * regarding copyright ownership. The ASF licenses this file + * to you under the Apache License, Version 2.0 (the + * "License"); you may not use this file except in compliance + * with the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.flink.ml.feature.minmaxscaler; + +import org.apache.flink.api.common.functions.RichMapFunction; +import org.apache.flink.api.java.typeutils.RowTypeInfo; +import org.apache.flink.ml.api.Model; +import org.apache.flink.ml.common.broadcast.BroadcastUtils; +import org.apache.flink.ml.common.datastream.TableUtils; +import org.apache.flink.ml.linalg.DenseVector; +import org.apache.flink.ml.param.Param; +import org.apache.flink.ml.util.ParamUtils; +import org.apache.flink.ml.util.ReadWriteUtils; +import org.apache.flink.streaming.api.datastream.DataStream; +import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; +import org.apache.flink.table.api.Table; +import org.apache.flink.table.api.bridge.java.StreamTableEnvironment; +import org.apache.flink.table.api.internal.TableImpl; +import org.apache.flink.table.runtime.typeutils.ExternalTypeInfo; +import org.apache.flink.types.Row; +import org.apache.flink.util.Preconditions; + +import org.apache.commons.lang3.ArrayUtils; + +import java.io.IOException; +import java.util.Collections; +import java.util.HashMap; +import java.util.Map; + +/** + * A Model which do a minMax scaler operation using the model data computed by {@link MinMaxScaler}. + */ +public class MinMaxScalerModel + implements Model<MinMaxScalerModel>, MinMaxScalerParams<MinMaxScalerModel> { + private final Map<Param<?>, Object> paramMap = new HashMap<>(); + private Table modelDataTable; + + public MinMaxScalerModel() { + ParamUtils.initializeMapWithDefaultValues(paramMap, this); + } + + @Override + public MinMaxScalerModel setModelData(Table... inputs) { + modelDataTable = inputs[0]; + return this; + } + + @Override + public Table[] getModelData() { + return new Table[] {modelDataTable}; + } + + @Override + @SuppressWarnings("unchecked") + public Table[] transform(Table... inputs) { + Preconditions.checkArgument(inputs.length == 1); + StreamTableEnvironment tEnv = + (StreamTableEnvironment) ((TableImpl) inputs[0]).getTableEnvironment(); + DataStream<Row> data = tEnv.toDataStream(inputs[0]); + DataStream<MinMaxScalerModelData> minMaxScalerModel = + MinMaxScalerModelData.getModelDataStream(modelDataTable); + final String broadcastModelKey = "broadcastModelKey"; + RowTypeInfo inputTypeInfo = TableUtils.getRowTypeInfo(inputs[0].getResolvedSchema()); + RowTypeInfo outputTypeInfo = + new RowTypeInfo( + ArrayUtils.addAll( + inputTypeInfo.getFieldTypes(), + ExternalTypeInfo.of(DenseVector.class)), + ArrayUtils.addAll(inputTypeInfo.getFieldNames(), getPredictionCol())); + DataStream<Row> output = + BroadcastUtils.withBroadcastStream( + Collections.singletonList(data), + Collections.singletonMap(broadcastModelKey, minMaxScalerModel), + inputList -> { + DataStream input = inputList.get(0); + return input.map( + new PredictOutputFunction( + broadcastModelKey, + getMax(), + getMin(), + getFeaturesCol()), + outputTypeInfo); + }); + return new Table[] {tEnv.fromDataStream(output)}; + } + + @Override + public Map<Param<?>, Object> getParamMap() { + return paramMap; + } + + @Override + public void save(String path) throws IOException { + ReadWriteUtils.saveMetadata(this, path); + ReadWriteUtils.saveModelData( + MinMaxScalerModelData.getModelDataStream(modelDataTable), + path, + new MinMaxScalerModelData.ModelDataEncoder()); + } + + /** + * Loads model data from path. + * + * @param env Stream execution environment. + * @param path Model path. + * @return MinMaxScalerModel model. + */ + public static MinMaxScalerModel load(StreamExecutionEnvironment env, String path) + throws IOException { + StreamTableEnvironment tEnv = StreamTableEnvironment.create(env); + MinMaxScalerModel model = ReadWriteUtils.loadStageParam(path); + DataStream<MinMaxScalerModelData> modelData = + ReadWriteUtils.loadModelData( + env, path, new MinMaxScalerModelData.ModelDataDecoder()); + return model.setModelData(tEnv.fromDataStream(modelData)); + } + + /** This operator loads model data and predicts result. */ + private static class PredictOutputFunction extends RichMapFunction<Row, Row> { + private final String featureCol; + private MinMaxScalerModelData minMaxScalerModelData; + private final double upperBound; + private final double lowerBound; + private final String broadcastKey; + private DenseVector maxVector; + private DenseVector minVector; + + public PredictOutputFunction( + String broadcastKey, double upperBound, double lowerBound, String featureCol) { + this.upperBound = upperBound; + this.lowerBound = lowerBound; + this.broadcastKey = broadcastKey; + this.featureCol = featureCol; + } + + @Override + public Row map(Row row) { + if (minMaxScalerModelData == null) { + minMaxScalerModelData = + (MinMaxScalerModelData) + getRuntimeContext().getBroadcastVariable(broadcastKey).get(0); + maxVector = minMaxScalerModelData.maxVector; + minVector = minMaxScalerModelData.minVector; + } + DenseVector feature = (DenseVector) row.getField(featureCol); + DenseVector outputVector = new DenseVector(maxVector.size()); + if (feature != null) { + for (int i = 0; i < maxVector.size(); ++i) { Review comment: Besides, could you please add a test case about maxVector[i] == minVector[i] && featureValue[i] != maxVector[i]? I think it would be helpful to test these corner cases. ########## File path: flink-ml-lib/src/main/java/org/apache/flink/ml/feature/minmaxscaler/MinMaxScalerModel.java ########## @@ -0,0 +1,181 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one + * or more contributor license agreements. See the NOTICE file + * distributed with this work for additional information + * regarding copyright ownership. The ASF licenses this file + * to you under the Apache License, Version 2.0 (the + * "License"); you may not use this file except in compliance + * with the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.flink.ml.feature.minmaxscaler; + +import org.apache.flink.api.common.functions.RichMapFunction; +import org.apache.flink.api.java.typeutils.RowTypeInfo; +import org.apache.flink.ml.api.Model; +import org.apache.flink.ml.common.broadcast.BroadcastUtils; +import org.apache.flink.ml.common.datastream.TableUtils; +import org.apache.flink.ml.linalg.DenseVector; +import org.apache.flink.ml.param.Param; +import org.apache.flink.ml.util.ParamUtils; +import org.apache.flink.ml.util.ReadWriteUtils; +import org.apache.flink.streaming.api.datastream.DataStream; +import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; +import org.apache.flink.table.api.Table; +import org.apache.flink.table.api.bridge.java.StreamTableEnvironment; +import org.apache.flink.table.api.internal.TableImpl; +import org.apache.flink.table.runtime.typeutils.ExternalTypeInfo; +import org.apache.flink.types.Row; +import org.apache.flink.util.Preconditions; + +import org.apache.commons.lang3.ArrayUtils; + +import java.io.IOException; +import java.util.Collections; +import java.util.HashMap; +import java.util.Map; + +/** + * A Model which do a minMax scaler operation using the model data computed by {@link MinMaxScaler}. + */ +public class MinMaxScalerModel + implements Model<MinMaxScalerModel>, MinMaxScalerParams<MinMaxScalerModel> { + private final Map<Param<?>, Object> paramMap = new HashMap<>(); + private Table modelDataTable; + + public MinMaxScalerModel() { + ParamUtils.initializeMapWithDefaultValues(paramMap, this); + } + + @Override + public MinMaxScalerModel setModelData(Table... inputs) { + modelDataTable = inputs[0]; + return this; + } + + @Override + public Table[] getModelData() { + return new Table[] {modelDataTable}; + } + + @Override + @SuppressWarnings("unchecked") + public Table[] transform(Table... inputs) { + Preconditions.checkArgument(inputs.length == 1); + StreamTableEnvironment tEnv = + (StreamTableEnvironment) ((TableImpl) inputs[0]).getTableEnvironment(); + DataStream<Row> data = tEnv.toDataStream(inputs[0]); + DataStream<MinMaxScalerModelData> minMaxScalerModel = + MinMaxScalerModelData.getModelDataStream(modelDataTable); + final String broadcastModelKey = "broadcastModelKey"; + RowTypeInfo inputTypeInfo = TableUtils.getRowTypeInfo(inputs[0].getResolvedSchema()); + RowTypeInfo outputTypeInfo = + new RowTypeInfo( + ArrayUtils.addAll( + inputTypeInfo.getFieldTypes(), + ExternalTypeInfo.of(DenseVector.class)), + ArrayUtils.addAll(inputTypeInfo.getFieldNames(), getPredictionCol())); + DataStream<Row> output = + BroadcastUtils.withBroadcastStream( + Collections.singletonList(data), + Collections.singletonMap(broadcastModelKey, minMaxScalerModel), + inputList -> { + DataStream input = inputList.get(0); + return input.map( + new PredictOutputFunction( + broadcastModelKey, + getMax(), + getMin(), + getFeaturesCol()), + outputTypeInfo); + }); + return new Table[] {tEnv.fromDataStream(output)}; + } + + @Override + public Map<Param<?>, Object> getParamMap() { + return paramMap; + } + + @Override + public void save(String path) throws IOException { + ReadWriteUtils.saveMetadata(this, path); + ReadWriteUtils.saveModelData( + MinMaxScalerModelData.getModelDataStream(modelDataTable), + path, + new MinMaxScalerModelData.ModelDataEncoder()); + } + + /** + * Loads model data from path. + * + * @param env Stream execution environment. + * @param path Model path. + * @return MinMaxScalerModel model. + */ + public static MinMaxScalerModel load(StreamExecutionEnvironment env, String path) + throws IOException { + StreamTableEnvironment tEnv = StreamTableEnvironment.create(env); + MinMaxScalerModel model = ReadWriteUtils.loadStageParam(path); + DataStream<MinMaxScalerModelData> modelData = + ReadWriteUtils.loadModelData( + env, path, new MinMaxScalerModelData.ModelDataDecoder()); + return model.setModelData(tEnv.fromDataStream(modelData)); + } + + /** This operator loads model data and predicts result. */ + private static class PredictOutputFunction extends RichMapFunction<Row, Row> { + private final String featureCol; + private MinMaxScalerModelData minMaxScalerModelData; + private final double upperBound; + private final double lowerBound; + private final String broadcastKey; + private DenseVector maxVector; + private DenseVector minVector; + + public PredictOutputFunction( + String broadcastKey, double upperBound, double lowerBound, String featureCol) { + this.upperBound = upperBound; + this.lowerBound = lowerBound; + this.broadcastKey = broadcastKey; + this.featureCol = featureCol; + } + + @Override + public Row map(Row row) { + if (minMaxScalerModelData == null) { + minMaxScalerModelData = + (MinMaxScalerModelData) + getRuntimeContext().getBroadcastVariable(broadcastKey).get(0); + maxVector = minMaxScalerModelData.maxVector; + minVector = minMaxScalerModelData.minVector; + } + DenseVector feature = (DenseVector) row.getField(featureCol); + DenseVector outputVector = new DenseVector(maxVector.size()); + if (feature != null) { + for (int i = 0; i < maxVector.size(); ++i) { Review comment: Even better: ```java @Override public Row map(Row row) { if (minMaxScalerModelData == null) { minMaxScalerModelData = (MinMaxScalerModelData) getRuntimeContext().getBroadcastVariable(broadcastKey).get(0); maxVector = minMaxScalerModelData.maxVector; minVector = minMaxScalerModelData.minVector; scaleVector = new DenseVector(minVector.size()); offsetVector = new DenseVector(minVector.size()); for (int i = 0; i < maxVector.size(); ++i) { if ((minVector.values[i] - maxVector.values[i]) == 0.0) { scaleVector.values[i] = 0.0; offsetVector.values[i] = (upperBound + lowerBound) / 2; } else { scaleVector.values[i] = (upperBound - lowerBound) / (maxVector.values[i] - minVector.values[i]); offsetVector.values[i] = lowerBound - minVector.values[i] * scaleVector.values[i]; } } } DenseVector feature = (DenseVector) row.getField(featureCol); DenseVector outputVector = new DenseVector(maxVector.size()); if (feature != null) { for (int i = 0; i < maxVector.size(); ++i) { outputVector.values[i] = feature.values[i] * scaleVector.values[i] + offsetVector.values[i]; } return Row.join(row, Row.of(outputVector)); } else { throw new RuntimeException("Feature value is null, please check your input data."); } } ``` With this implementation, there would be only one multiplication and one addition in the for loop, which can definitely be replaced by `BLAS.axpy`. It would cause some precision loss (less then 1e-16 on this PR's test data), but I think the performance improvement worth it. ########## File path: flink-ml-lib/src/main/java/org/apache/flink/ml/feature/minmaxscaler/MinMaxScalerModel.java ########## @@ -0,0 +1,181 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one + * or more contributor license agreements. See the NOTICE file + * distributed with this work for additional information + * regarding copyright ownership. The ASF licenses this file + * to you under the Apache License, Version 2.0 (the + * "License"); you may not use this file except in compliance + * with the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.flink.ml.feature.minmaxscaler; + +import org.apache.flink.api.common.functions.RichMapFunction; +import org.apache.flink.api.java.typeutils.RowTypeInfo; +import org.apache.flink.ml.api.Model; +import org.apache.flink.ml.common.broadcast.BroadcastUtils; +import org.apache.flink.ml.common.datastream.TableUtils; +import org.apache.flink.ml.linalg.DenseVector; +import org.apache.flink.ml.param.Param; +import org.apache.flink.ml.util.ParamUtils; +import org.apache.flink.ml.util.ReadWriteUtils; +import org.apache.flink.streaming.api.datastream.DataStream; +import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; +import org.apache.flink.table.api.Table; +import org.apache.flink.table.api.bridge.java.StreamTableEnvironment; +import org.apache.flink.table.api.internal.TableImpl; +import org.apache.flink.table.runtime.typeutils.ExternalTypeInfo; +import org.apache.flink.types.Row; +import org.apache.flink.util.Preconditions; + +import org.apache.commons.lang3.ArrayUtils; + +import java.io.IOException; +import java.util.Collections; +import java.util.HashMap; +import java.util.Map; + +/** + * A Model which do a minMax scaler operation using the model data computed by {@link MinMaxScaler}. + */ +public class MinMaxScalerModel + implements Model<MinMaxScalerModel>, MinMaxScalerParams<MinMaxScalerModel> { + private final Map<Param<?>, Object> paramMap = new HashMap<>(); + private Table modelDataTable; + + public MinMaxScalerModel() { + ParamUtils.initializeMapWithDefaultValues(paramMap, this); + } + + @Override + public MinMaxScalerModel setModelData(Table... inputs) { + modelDataTable = inputs[0]; + return this; + } + + @Override + public Table[] getModelData() { + return new Table[] {modelDataTable}; + } + + @Override + @SuppressWarnings("unchecked") + public Table[] transform(Table... inputs) { + Preconditions.checkArgument(inputs.length == 1); + StreamTableEnvironment tEnv = + (StreamTableEnvironment) ((TableImpl) inputs[0]).getTableEnvironment(); + DataStream<Row> data = tEnv.toDataStream(inputs[0]); + DataStream<MinMaxScalerModelData> minMaxScalerModel = + MinMaxScalerModelData.getModelDataStream(modelDataTable); + final String broadcastModelKey = "broadcastModelKey"; + RowTypeInfo inputTypeInfo = TableUtils.getRowTypeInfo(inputs[0].getResolvedSchema()); + RowTypeInfo outputTypeInfo = + new RowTypeInfo( + ArrayUtils.addAll( + inputTypeInfo.getFieldTypes(), + ExternalTypeInfo.of(DenseVector.class)), + ArrayUtils.addAll(inputTypeInfo.getFieldNames(), getPredictionCol())); + DataStream<Row> output = + BroadcastUtils.withBroadcastStream( + Collections.singletonList(data), + Collections.singletonMap(broadcastModelKey, minMaxScalerModel), + inputList -> { + DataStream input = inputList.get(0); + return input.map( + new PredictOutputFunction( + broadcastModelKey, + getMax(), + getMin(), + getFeaturesCol()), + outputTypeInfo); + }); + return new Table[] {tEnv.fromDataStream(output)}; + } + + @Override + public Map<Param<?>, Object> getParamMap() { + return paramMap; + } + + @Override + public void save(String path) throws IOException { + ReadWriteUtils.saveMetadata(this, path); + ReadWriteUtils.saveModelData( + MinMaxScalerModelData.getModelDataStream(modelDataTable), + path, + new MinMaxScalerModelData.ModelDataEncoder()); + } + + /** + * Loads model data from path. + * + * @param env Stream execution environment. + * @param path Model path. + * @return MinMaxScalerModel model. + */ + public static MinMaxScalerModel load(StreamExecutionEnvironment env, String path) + throws IOException { + StreamTableEnvironment tEnv = StreamTableEnvironment.create(env); + MinMaxScalerModel model = ReadWriteUtils.loadStageParam(path); + DataStream<MinMaxScalerModelData> modelData = + ReadWriteUtils.loadModelData( + env, path, new MinMaxScalerModelData.ModelDataDecoder()); + return model.setModelData(tEnv.fromDataStream(modelData)); + } + + /** This operator loads model data and predicts result. */ + private static class PredictOutputFunction extends RichMapFunction<Row, Row> { + private final String featureCol; + private MinMaxScalerModelData minMaxScalerModelData; + private final double upperBound; + private final double lowerBound; + private final String broadcastKey; + private DenseVector maxVector; + private DenseVector minVector; + + public PredictOutputFunction( + String broadcastKey, double upperBound, double lowerBound, String featureCol) { + this.upperBound = upperBound; + this.lowerBound = lowerBound; + this.broadcastKey = broadcastKey; + this.featureCol = featureCol; + } + + @Override + public Row map(Row row) { + if (minMaxScalerModelData == null) { + minMaxScalerModelData = + (MinMaxScalerModelData) + getRuntimeContext().getBroadcastVariable(broadcastKey).get(0); + maxVector = minMaxScalerModelData.maxVector; + minVector = minMaxScalerModelData.minVector; + } + DenseVector feature = (DenseVector) row.getField(featureCol); + DenseVector outputVector = new DenseVector(maxVector.size()); + if (feature != null) { + for (int i = 0; i < maxVector.size(); ++i) { + if ((minVector.values[i] - maxVector.values[i]) != 0.0) { + outputVector.values[i] = + (feature.values[i] - minVector.values[i]) + / (maxVector.values[i] - minVector.values[i]) Review comment: Sounds good. -- This is an automated message from the Apache Git Service. To respond to the message, please log on to GitHub and use the URL above to go to the specific comment. To unsubscribe, e-mail: [email protected] For queries about this service, please contact Infrastructure at: [email protected]
