[
https://issues.apache.org/jira/browse/FLINK-29729?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=17622913#comment-17622913
]
dalongliu commented on FLINK-29729:
-----------------------------------
Do we can configure the aws credential info at the job level by providing
format options? If different jobs run in the same cluster need to use different
credential info, the change you propose maybe also can not work.
> Support including the configured properties from flink-conf.yaml during
> create ParquetReader
> --------------------------------------------------------------------------------------------
>
> Key: FLINK-29729
> URL: https://issues.apache.org/jira/browse/FLINK-29729
> Project: Flink
> Issue Type: Improvement
> Components: Formats (JSON, Avro, Parquet, ORC, SequenceFile)
> Reporter: Zhiping Wu
> Priority: Major
> Labels: pull-request-available
> Attachments: image-2022-10-22-17-41-38-084.png
>
>
> Hi, I'm thinking if we can include the configured properties from
> flink-conf.yaml during create ParquetReader in `ParquetVectorizedInputformat`
> besides hadoop configuration.
>
> I meet a use case that I want to query a table from S3 bucket with parquet
> format via filesystem connector, and I configured the AWS credential info in
> the `flink-conf.yaml`, e.g. fs.s3a.access.key, fs.s3a.secret.key, etc.
>
> The JobManager(SourceCoordinator) works well about "getFileStatus" of S3
> objects and generate splits, but TaskManager(SourceOperator ->
> ParquetVectorizedInputFormat -> ParquetReader) doesn't work since missing AWS
> credential info.
>
> After taking a deep analysis at the source code about creating ParquetReader
> to reader footer, I found that the AWS credential info is not passed during
> create & initialize S3AFileSystem, the detail info as showing in the bellow
> snapshot. !image-2022-10-22-17-41-38-084.png!
>
> The `hadoopConfig` only contains the properties from table format options and
> default hadoop properties from core-site.xml, hdfs-site.xml and etc. Because
> the `hadoopConfig` is injected by
> `ParquetFileFormatFactory#createRuntimeDecoder` ->
> `ParquetColumnarRowInputFormat.createPartitionedFormat` ->
> `ParquetFileFormatFactory.generateParquetConfiguration`
>
> {code:java}
> @Override
> public BulkFormat<RowData, FileSourceSplit> createRuntimeDecoder(
> DynamicTableSource.Context sourceContext,
> DataType producedDataType,
> int[][] projections) {
> return ParquetColumnarRowInputFormat.createPartitionedFormat(
> getParquetConfiguration(formatOptions),
> (RowType)
> Projection.of(projections).project(producedDataType).getLogicalType(),
> sourceContext.createTypeInformation(producedDataType),
> Collections.emptyList(),
> null,
> VectorizedColumnBatch.DEFAULT_SIZE,
> formatOptions.get(UTC_TIMEZONE),
> true);
> }
>
> private static Configuration getParquetConfiguration(ReadableConfig options) {
> Configuration conf = new Configuration();
> Properties properties = new Properties();
> ((org.apache.flink.configuration.Configuration)
> options).addAllToProperties(properties);
> properties.forEach((k, v) -> conf.set(IDENTIFIER + "." + k, v.toString()));
> return conf;
> }
> {code}
>
> I know that I can add the AWS credential info into core-site.xml or
> hdfs-site.xml, so that the `ParquetReader` can get the credential, but I
> think it might not a good practice, especially different flink jobs will use
> different AWS credential, so I'm thinking if we can combine the default
> hadoop configuration(static) and the properties from
> `flink-conf.yaml`(dynamic) during create `ParquetReader`.
> For example, just like how this PR doing?
> https://github.com/apache/flink/pull/21130
>
> BTW, I'm using Flink 1.15.1 in a standalone cluster to validate the whole
> process, but I think not only 1.15.1 version meet this problem, and not only
> access the objects/files from AWS S3 bucket, any other cloud object storage
> might also meet this problem.
>
> Besides change the code, is there any other solution can help me to handle
> this problem? thanks.
--
This message was sent by Atlassian Jira
(v8.20.10#820010)