[ 
https://issues.apache.org/jira/browse/FLINK-31238?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=17694835#comment-17694835
 ] 

Yue Ma edited comment on FLINK-31238 at 3/7/23 6:22 AM:
--------------------------------------------------------

[~masteryhx] Thanks for reply.
1. In our current implementation, IngestDb is a new API in rocksdb and does not 
depend on ingestExternalFile. Therefore, the API of VersionSet needs to be used 
to add and delete rocksdb sst files.
2. I think the Verset is the core API of rocksdb. If it is changed, all 
operations such as compaction\flush\ingestFile need to be changed, so I think 
the migration will not be complicated. I alse can try to push forword this 
feature to the rocksdb community
3. This design is mainly considered to reduce the time of rebuildDB. I think it 
is possible to reduce the number of downloaded sst files and only download the 
required sst files. We can continue to optimize in the feature, thus currently 
in our production environment, especially when the state is relatively large, 
the time-consuming of rebuilding db is still much longer than downloading 
files. For example, for a task with a single task of 10G state, it may only 
take 1 minute to download the files, but takes more than 15 minutes to rebuild 
DB.


was (Author: mayuehappy):
[~masteryhx] Thanks for reply.
1. In our current implementation, IngestDb is a new API in rocksdb and does not 
depend on ingestExternalFile. Therefore, the API of VersionSet needs to be used 
to add and delete rocksdb sst files.
2. I think we can first focus on the feasibility of this design and then about 
the maintenance of frocksdb. BTW I think the Verset is the core API of rocksdb. 
If it is changed, all operations such as compaction\flush\ingestFile need to be 
changed, so I think the migration will not be complicated. I alse can try to 
push forword this feature to the rocksdb community
3. This design is mainly considered to reduce the time of rebuildDB. I think it 
is possible to reduce the number of downloaded sst files and only download the 
required sst files. We can continue to optimize this feature later, thus 
currently in our production environment, especially when the state is 
relatively large, the time-consuming of rebuilding db is still much longer than 
downloading files. For example, for a task with a single task of 10G state, it 
may only take 1 minute to download the files, but takes more than 15 minutes to 
rebuild DB.

> Use IngestDB to speed up Rocksdb rescaling recovery 
> ----------------------------------------------------
>
>                 Key: FLINK-31238
>                 URL: https://issues.apache.org/jira/browse/FLINK-31238
>             Project: Flink
>          Issue Type: Improvement
>          Components: Runtime / State Backends
>    Affects Versions: 1.16.1
>            Reporter: Yue Ma
>            Priority: Major
>         Attachments: image-2023-02-27-16-41-18-552.png, 
> image-2023-02-27-16-57-18-435.png
>
>
> There have been many discussions and optimizations in the community about 
> optimizing rocksdb scaling and recovery.
> https://issues.apache.org/jira/browse/FLINK-17971
> https://issues.apache.org/jira/browse/FLINK-8845
> https://issues.apache.org/jira/browse/FLINK-21321
> We hope to discuss some of our explorations under this ticket
> The process of scaling and recovering in rocksdb simply requires two steps
>  # Insert the valid keyGroup data of the new task.
>  # Delete the invalid data in the old stateHandle.
> The current method for data writing is to specify the main Db first and then 
> insert data using writeBatch.In addition, the method of deleteRange is 
> currently used to speed up the ClipDB. But in our production environment, we 
> found that the speed of rescaling is still very slow, especially when the 
> state of a single Task is large. 
>  
> We hope that the previous sst file can be reused directly when restoring 
> state, instead of retraversing the data. So we made some attempts to optimize 
> it in our internal version of flink and frocksdb.
>  
> We added two APIs *ClipDb* and *IngestDb* in frocksdb. 
>  * ClipDB is used to clip the data of a DB. Different from db.DeteleRange and 
> db.Delete, DeleteValue and RangeTombstone will not be generated for parts 
> beyond the key range. We will iterate over the FileMetaData of db. Process 
> each sst file. There are three situations here. 
> If all the keys of a file are required, we will keep the sst file and do 
> nothing 
> If all the keys of the sst file exceed the specified range, we will delete 
> the file directly. 
> If we only need some part of the sst file, we will rewrite the required keys 
> to generate a new sst file。
> All sst file changes will be placed in a VersionEdit, and the current 
> versions will LogAndApply this edit to ensure that these changes can take 
> effect
>  * IngestDb is used to directly ingest all sst files of one DB into another 
> DB. But it is necessary to strictly ensure that the keys of the two DBs do 
> not overlap, which is easy to do in the Flink scenario. The hard link method 
> will be used in the process of ingesting files, so it will be very fast. At 
> the same time, the file number of the main DB will be incremented 
> sequentially, and the SequenceNumber of the main DB will be updated to the 
> larger SequenceNumber of the two DBs.
> When IngestDb and ClipDb are supported, the state restoration logic is as 
> follows
>  * Open the first StateHandle as the main DB and pause the compaction.
>  * Clip the main DB according to the KeyGroup range of the Task with ClipDB
>  * Open other StateHandles in sequence as Tmp DB, and perform ClipDb  
> according to the KeyGroup range
>  * Ingest all tmpDb into the main Db after tmpDb cliped
>  * Open the Compaction process of the main DB
> !image-2023-02-27-16-57-18-435.png|width=434,height=152!
> We have done some benchmark tests on the internal Flink version, and the test 
> results show that compared with the writeBatch method, the expansion and 
> recovery speed of IngestDb can be increased by 5 to 10 times as follows 
> (SstFileWriter means uses the recovery method of generating sst files through 
> SstFileWriter in parallel)
>  * parallelism changes from 4 to 2
> |*TaskStateSize*|*Write_Batch*|*SST_File_Writer*|*Ingest_DB*|
> |500M|Iteration 1: 8.018 s/op
> Iteration 2: 9.551 s/op
> Iteration 3: 7.486 s/op|Iteration 1: 6.041 s/op
> Iteration 2: 5.934 s/op
> Iteration 3: 6.707 s/o|{color:#ff0000}Iteration 1: 3.922 s/op{color}
> {color:#ff0000}Iteration 2: 3.208 s/op{color}
> {color:#ff0000}Iteration 3: 3.096 s/op{color}|
> |1G|Iteration 1: 19.686 s/op
> Iteration 2: 19.402 s/op
> Iteration 3: 21.146 s/op|Iteration 1: 17.538 s/op
> Iteration 2: 16.933 s/op
> Iteration 3: 15.486 s/op|{color:#ff0000}Iteration 1: 6.207 s/op{color}
> {color:#ff0000}Iteration 2: 7.164 s/op{color}
> {color:#ff0000}Iteration 3: 6.397 s/op{color}|
> |5G|Iteration 1: 244.795 s/op
> Iteration 2: 243.141 s/op
> Iteration 3: 253.542 s/op|Iteration 1: 78.058 s/op
> Iteration 2: 85.635 s/op
> Iteration 3: 76.568 s/op|{color:#ff0000}Iteration 1: 23.397 s/op{color}
> {color:#ff0000}Iteration 2: 21.387 s/op{color}
> {color:#ff0000}Iteration 3: 22.858 s/op{color}|
>  * parallelism changes from 4 to 8
> |*TaskStateSize*|*Write_Batch*|*SST_File_Writer*|*Ingest_DB*|
> |500M|Iteration 1: 3.477 s/op
> Iteration 2: 3.515 s/op
> Iteration 3: 3.433 s/op|Iteration 1: 3.453 s/op
> Iteration 2: 3.300 s/op
> Iteration 3: 3.313 s/op|{color:#ff0000}Iteration 1: 0.941 s/op{color}
> {color:#ff0000}Iteration 2: 0.963 s/op{color}
> {color:#ff0000}Iteration 3: 1.102 s/op{color}|
> |1G|IIteration 1: 7.571 s/op
> Iteration 2: 7.352 s/op
> Iteration 3: 7.568 s/op|Iteration 1: 5.032 s/op
> Iteration 2: 4.689 s/op
> Iteration 3: 6.883 s/op|{color:#ff0000}Iteration 1: 2.130 s/op{color}
> {color:#ff0000}Iteration 2: 2.110 s/op{color}
> {color:#ff0000}Iteration 3: 2.034 s/op{color}|
> |5G|Iteration 1: 91.870 s/op
> Iteration 2: 94.229 s/op
> Iteration 3: 93.271 s/op|Iteration 1: 25.845 s/op
> Iteration 2: 25.571 s/op
> Iteration 3: 25.685 s/op|{color:#ff0000}Iteration 1: 11.154 s/op{color}
> {color:#ff0000}Iteration 2: 10.732 s/op{color}
> {color:#ff0000}Iteration 3: 10.622 s/op{color}|
>  * parallelism changes from 4 to 6
> |*TaskStateSize*|*Write_Batch*|*SST_File_Writer*|*Ingest_DB*|
> |500M|Iteration 1: 8.209 s/op
> Iteration 2: 9.893 s/op
> Iteration 3: 9.150 s/op|Iteration 1: 6.041 s/op
> Iteration 2: 5.934 s/op
> Iteration 3: 6.707 s/o|{color:#ff0000}Iteration 1: 2.622 s/op{color}
> {color:#ff0000}Iteration 2: 2.545 s/op{color}
> {color:#ff0000}Iteration 3: 2.573 s/op{color}|
> |1G|Iteration 1: 21.206 s/op
> Iteration 2: 26.214 s/op
> Iteration 3: 20.269 s/op|Iteration 1: 10.043 s/op
> Iteration 2: 10.744 s/op
> Iteration 3: 10.461 s/op|{color:#ff0000}Iteration 1: 4.400 s/op{color}
> {color:#ff0000}Iteration 2: 4.340 s/op{color}
> {color:#ff0000}Iteration 3: 6.234 s/op{color}|
> |5G|IIteration 1: 170.606 s/op
> Iteration 2: 160.576 s/op
> Iteration 3: 159.425 s/op|IIteration 1: 52.537 s/op
> Iteration 2: 50.576 s/op
> Iteration 3: 50.823 s/op|{color:#ff0000}Iteration 1: 19.053 s/op{color}
> {color:#ff0000}Iteration 2: 18.504 s/op{color}
> {color:#ff0000}Iteration 3: 18.249 s/op{color}|
>  * parallelism changes from 4 to 3
> |*TaskStateSize*|*Write_Batch*|*SST_File_Writer*|*Ingest_DB*|
> |500M|Iteration 1: 6.330 s/op
> Iteration 2: 5.614 s/op
> Iteration 3: 5.736 s/op|Iteration 1: 4.083 s/op
> Iteration 2: 5.655 s/op
> Iteration 3: 3.998 s/op|{color:#ff0000}Iteration 1: 2.157 s/op{color}
> {color:#ff0000}Iteration 2: 2.201 s/op{color}
> {color:#ff0000}Iteration 3: 3.212 s/op{color}|
> |1G|Iteration 1: 13.814 s/op
> Iteration 2: 12.852 s/op
> Iteration 3: 13.480 s/op|Iteration 1: 9.619 s/op
> Iteration 2: 9.197 s/op
> Iteration 3: 8.694 s/op|{color:#ff0000}Iteration 1: 4.227 s/op{color}
> {color:#ff0000}Iteration 2: 4.234 s/op{color}
> {color:#ff0000}Iteration 3: 4.177 s/op{color}|
> |5G|Iteration 1: 136.621 s/op
> Iteration 2: 127.097 s/op
> Iteration 3: 139.694 s/op|Iteration 1: 39.612 s/op
> Iteration 2: 38.809 s/op
> Iteration 3: 39.125 s/op|{color:#ff0000}Iteration 1: 16.691 s/op{color}
> {color:#ff0000}Iteration 2: 16.599 s/op{color}
> {color:#ff0000}Iteration 3: 16.726 s/op{color}|



--
This message was sent by Atlassian Jira
(v8.20.10#820010)

Reply via email to