[
https://issues.apache.org/jira/browse/FLINK-31830?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=17730846#comment-17730846
]
Jane Chan edited comment on FLINK-31830 at 6/26/23 2:16 PM:
------------------------------------------------------------
It takes some time to reason out the cause, and sorry for the late update.
h4. 1. Identify the problem
The issue has been reproduced using Flink release-1.14.6 (which depends on
calcite-1.26).
h4. 2. Why SQL gets a correct plan, while API doesn't
First, the resolved schema differs. You can verify this by the following code
snippet.
{code:scala}
@Test
def testSchema(): Unit = {
// create temporary table t1
val tableDescriptor = TableDescriptor.forConnector("datagen")
.schema(Schema.newBuilder
.column("id", DataTypes.INT.notNull)
.column("a", DataTypes.ROW(DataTypes.FIELD("np",
DataTypes.INT.notNull())).nullable)
.build)
.build
tableEnv.createTemporaryTable("t1", tableDescriptor)
// create temporary table t2
tableEnv.executeSql(
s"""
|create temporary table t2 (
| id int not null,
| a row<np int not null>
|) with (
| 'connector' = 'datagen'
|)
|""".stripMargin)
val catalogManager =
tableEnv.asInstanceOf[StreamTableEnvironmentImpl].getCatalogManager
val result1 =
catalogManager.getTable(ObjectIdentifier.of("default_catalog",
"default_database", "t1"))
val result2 =
catalogManager.getTable(ObjectIdentifier.of("default_catalog",
"default_database", "t2"))
println(result1.get().getResolvedSchema)
println(result2.get().getResolvedSchema)
}
{code}
The result will be
{code:sql}
--result1
(
`id` INT NOT NULL,
`a` ROW<`np` INT NOT NULL>
)
--result2
(
`id` INT NOT NULL,
`a` ROW<`np` INT> -- changed by
org.apache.calcite.sql.SqlDataTypeSpec#fixUpNullability
)
{code}
You can tell from the print result that the nullability specified by the user
does not get respect. However, this is a by-design behavior for Calcite. The
community has an in-depth discussion CALCITE-2464 on the semantics of setting
nullability for structured type.
TL;DR
!image-2023-06-09-15-06-01-322.png|width=844,height=219!
This feature is introduced in Calcite 1.19.
As a result, the DDL `a` ROW<`np` INT NOT NULL> will be rewritten to `a`
ROW<`np` INT> during the SQL-to-operation conversion.
(Please check org.apache.calcite.sql.SqlDataTypeSpec#fixUpNullability for more
details).
As for the plan, I assume based on the schema produced by API
{code:java}
( `id` INT NOT NULL, `a` ROW<`np` INT NOT NULL> ) {code}
the optimization rules work as expected.
The filter condition after the left outer join is
{code:java}
where a.a is null or a.a.np is null {code}
and can be reduced and pushdown as
{code:java}
where a.a is null {code}
since the nullability of a.np is always false.
And RemoveUnreachableCoalesceArgumentsRule matches the following case
{code:java}
COALESCE(a.a.np, b.a.np) c1 {code}
because a.a.np is never nullable, so the invocation of coalesce is reduced.
!image-2023-06-09-15-21-13-720.png|width=892,height=575!
h4. 3. Conclusion
So in a nutshell, we should align the structured type nullability created
through API with SQL. The correct result for API should follow the example
`testNullabilityForSql` given in FLINK-30282. Last but not least, we should
improve the document and add a description of the nullability of structured
type, o.w. it might not be straightforward for users to understand.
h4.
was (Author: qingyue):
It takes some time to reason out the cause, and sorry for the late update.
h4. 1. Identify the problem
The issue has been reproduced using Flink release-1.14.6 (which depends on
calcite-1.26).
h4. 2. Why SQL gets a correct plan, while API doesn't
First, the resolved schema differs. You can verify this by the following code
snippet.
{code:scala}
@Test
def testSchema(): Unit = {
// create temporary table t1
val tableDescriptor = TableDescriptor.forConnector("datagen")
.schema(Schema.newBuilder
.column("id", DataTypes.INT.notNull)
.column("a", DataTypes.ROW(DataTypes.FIELD("np",
DataTypes.INT.notNull())).nullable)
.build)
.build
tableEnv.createTemporaryTable("t1", tableDescriptor)
// create temporary table t2
tableEnv.executeSql(
s"""
|create temporary table t2 (
| id int not null,
| a row<np int not null>
|) with (
| 'connector' = 'datagen'
|)
|""".stripMargin)
val catalogManager =
tableEnv.asInstanceOf[StreamTableEnvironmentImpl].getCatalogManager
val result1 =
catalogManager.getTable(ObjectIdentifier.of("default_catalog",
"default_database", "t1"))
val result2 =
catalogManager.getTable(ObjectIdentifier.of("default_catalog",
"default_database", "t2"))
println(result1.get().getResolvedSchema)
println(result2.get().getResolvedSchema)
}
{code}
The result will be
{code:sql}
--result1
(
`id` INT NOT NULL,
`a` ROW<`np` INT NOT NULL>
)
--result2
(
`id` INT NOT NULL,
`a` ROW<`np` INT> -- changed by
org.apache.calcite.sql.SqlDataTypeSpec#fixUpNullability
)
{code}
You can tell from the print result that the nullability specified by the user
does not get respect. However, this is a by-design behavior for Calcite. The
community has an in-depth discussion CALCITE-2464 on the semantics of setting
nullability for structured type.
TL;DR
!image-2023-06-09-15-06-01-322.png|width=844,height=219!
This feature is introduced in Calcite 1.19.
As a result, the DDL `a` ROW<`np` INT NOT NULL> will be rewritten to `a`
ROW<`np` INT> during the SQL-to-operation conversion.
(Please check org.apache.calcite.sql.SqlDataTypeSpec#fixNullability for more
details).
As for the plan, I assume based on the schema produced by API
{code:java}
( `id` INT NOT NULL, `a` ROW<`np` INT NOT NULL> ) {code}
the optimization rules work as expected.
The filter condition after the left outer join is
{code:java}
where a.a is null or a.a.np is null {code}
and can be reduced and pushdown as
{code:java}
where a.a is null {code}
since the nullability of a.np is always false.
And RemoveUnreachableCoalesceArgumentsRule matches the following case
{code:java}
COALESCE(a.a.np, b.a.np) c1 {code}
because a.a.np is never nullable, so the invocation of coalesce is reduced.
!image-2023-06-09-15-21-13-720.png|width=892,height=575!
h4. 3. Conclusion
So in a nutshell, we should align the structured type nullability created
through API with SQL. Last but not least, we should improve the document and
add a description of the nullability of structured type, o.w. it might not be
straightforward for users to understand.
h4.
> Coalesce on nested fields with different nullabilities will get wrong plan
> --------------------------------------------------------------------------
>
> Key: FLINK-31830
> URL: https://issues.apache.org/jira/browse/FLINK-31830
> Project: Flink
> Issue Type: Bug
> Components: Table SQL / Planner
> Affects Versions: 1.14.6
> Reporter: lincoln lee
> Assignee: Jane Chan
> Priority: Major
> Attachments: image-2023-06-09-15-06-01-322.png,
> image-2023-06-09-15-21-13-720.png
>
>
> A test case similar to FLINK-31829, only changes the nullable field `a.np` to
> not null, will get a wrong plan in 1.14.x (reported from the community user):
> {code}
> @Test
> def testCoalesceOnNestedColumns(): Unit = {
> val tEnv = util.tableEnv
> val tableDescriptor = TableDescriptor.forConnector("datagen")
> .schema(Schema.newBuilder
> .column("id", DataTypes.INT.notNull)
> .column("a", DataTypes.ROW(DataTypes.FIELD("np",
> DataTypes.INT.notNull())).nullable)
> .build)
> .build
> tEnv.createTemporaryTable("t1", tableDescriptor)
> tEnv.createTemporaryTable("t2", tableDescriptor)
> val res = tEnv.executeSql("EXPLAIN SELECT a.id, COALESCE(a.a.np, b.a.np)
> c1, IFNULL(a.a.np, b.a.np) c2 FROM t1 a left JOIN t2 b ON a.id=b.id where a.a
> is null or a.a.np is null")
> res.print()
> }
> == Abstract Syntax Tree ==
> LogicalProject(id=[$0], c1=[CAST($1.np):INTEGER], c2=[IFNULL($1.np, $3.np)])
> +- LogicalFilter(condition=[OR(IS NULL($1), IS NULL(CAST($1.np):INTEGER))])
> +- LogicalJoin(condition=[=($0, $2)], joinType=[left])
> :- LogicalTableScan(table=[[default_catalog, default_database, t1]])
> +- LogicalTableScan(table=[[default_catalog, default_database, t2]])
> {code}
> the top project in the ast is wrong: `LogicalProject(id=[$0],
> c1=[CAST($1.np):INTEGER], c2=[IFNULL($1.np, $3.np)])`, the
> `c1=[CAST($1.np):INTEGER]` relate to `COALESCE(a.a.np, b.a.np) c1` is
> incorrect,
> but this works fine when using sql ddl to create tables
> {code}
> @Test
> def testCoalesceOnNestedColumns2(): Unit = {
> val tEnv = util.tableEnv
> tEnv.executeSql(
> s"""
> |create temporary table t1 (
> | id int not null,
> | a row<np int not null>
> |) with (
> | 'connector' = 'datagen'
> |)
> |""".stripMargin)
> tEnv.executeSql(
> s"""
> |create temporary table t2 (
> | id int not null,
> | a row<np int not null>
> |) with (
> | 'connector' = 'datagen'
> |)
> |""".stripMargin)
> val res = tEnv.executeSql(
> "EXPLAIN SELECT a.id, COALESCE(a.a.np, b.a.np) c1, IFNULL(a.a.np,
> b.a.np) c2 FROM t1 a left JOIN t2 b ON a.id=b.id where a.a is null or a.a.np
> is null")
> res.print()
> }
> {code}
> from 1.15, the coalesce will be a new builtin function, and the ast looks
> correct in version 1.15+, while before 1.15 it was rewritten as `case when`
--
This message was sent by Atlassian Jira
(v8.20.10#820010)