[ 
https://issues.apache.org/jira/browse/FLINK-32889?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=17755780#comment-17755780
 ] 

Fan Hong commented on FLINK-32889:
----------------------------------

BTW, the area under PRC is also found incorrect. PySpark and scikit-learn give

0.9510202726261435,  while current implementation gives 0.9377705627705628.

> BinaryClassificationEvaluator gives wrong weighted AUC value
> ------------------------------------------------------------
>
>                 Key: FLINK-32889
>                 URL: https://issues.apache.org/jira/browse/FLINK-32889
>             Project: Flink
>          Issue Type: Bug
>          Components: Library / Machine Learning
>    Affects Versions: ml-2.3.0
>            Reporter: Fan Hong
>            Priority: Major
>              Labels: pull-request-available
>
> BinaryClassificationEvaluator gives wrong AUC value when a weight column 
> provided.
> Here is an case from the unit test. The (score, label, weight) of data are:
> {code:java}
> (0.9, 1.0,  0.8),
> (0.9, 1.0,  0.7),
> (0.9, 1.0,  0.5),
> (0.75, 0.0,  1.2),
> (0.6, 0.0,  1.3),
> (0.9, 1.0,  1.5),
> (0.9, 1.0,  1.4),
> (0.4, 0.0,  0.3),
> (0.3, 0.0,  0.5),
> (0.9, 1.0,  1.9),
> (0.2, 0.0,  1.2),
> (0.1, 1.0,  1.0)
> {code}
> PySpark and scikit-learn gives a AUC score of 0.87179, while Flink ML 
> implementation gives 0.891168.
>  



--
This message was sent by Atlassian Jira
(v8.20.10#820010)

Reply via email to