[ 
https://issues.apache.org/jira/browse/FLINK-4469?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Jark Wu updated FLINK-4469:
---------------------------
    Description: 
Normal user-defined functions, such as concat(), take in a single input row and 
output a single output row. In contrast, table-generating functions transform a 
single input row to multiple output rows. It is very useful in some cases, such 
as look up in HBase by rowkey and return one or more rows.

Adding a user defined table function should:

1. inherit from UDTF class with specific generic type T
2. define one or more evel function. 

NOTE: 
1. the eval method must be public and non-static.
2. the generic type T is the row type returned by table function. Because of 
Java type erasure, we can’t extract T from the Iterable.
3. use {{collect(T)}} to emit table row
4. eval method can be overload. Blink will choose the best match eval method to 
call according to parameter types and number.


{code}
public class Word {
  public String word;
  public Integer length;
}

public class SplitStringUDTF extends UDTF<Word> {
    public Iterable<Word> eval(String str) {
        if (str != null) {
            for (String s : str.split(",")) {
                collect(new Word(s, s.length()));
            }
        }
    }
}

// in SQL
tableEnv.registerFunction("split", new SplitStringUDTF())
tableEnv.sql("SELECT a, b, t.* FROM MyTable, LATERAL TABLE(split(c)) AS t(w,l)")

// in Java Table API
tableEnv.registerFunction("split", new SplitStringUDTF())
// rename split table columns to “w” and “l”
table.crossApply("split(c)", "w, l")    
     .select("a, b, w, l")
// without renaming, we will use the origin field names in the POJO/case/...
table.crossApply("split(c)")
     .select("a, b, word, length")

// in Scala Table API
val split = new SplitStringUDTF()
table.crossApply(split('c), 'w, 'l)
     .select('a, 'b, 'w, 'l)
// outerApply for outer join to a UDTF
table.outerApply(split('c))
     .select('a, 'b, 'word, 'length)
{code}


See [1] for more information about UDTF design.

[1] 
https://docs.google.com/document/d/15iVc1781dxYWm3loVQlESYvMAxEzbbuVFPZWBYuY1Ek/edit#




  was:
Normal user-defined functions, such as concat(), take in a single input row and 
output a single output row. In contrast, table-generating functions transform a 
single input row to multiple output rows. It is very useful in some cases, such 
as look up in HBase by rowkey and return one or more rows.

Adding a user defined table function should:

1. inherit from UDTF class with specific generic type T
2. define one or more evel function. 

NOTE: 
1. the eval method must be public and non-static.
2. the generic type T is the row type returned by table function. Because of 
Java type erasure, we can’t extract T from the Iterable.
3. use {{collect(T)}} to emit table row
4. eval method can be overload. Blink will choose the best match eval method to 
call according to parameter types and number.


{code}
public class Word {
  public String word;
  public Integer length;
}

public class SplitStringUDTF extends UDTF<Word> {
    public Iterable<Word> eval(String str) {
        if (str == null) {
            return new ArrayList<>();
        } else {
            List<Word> list = new ArrayList<>();
            for (String s : str.split(",")) {
                Word word = new Word(s, s.length());
                list.add(word);
            }
            return list;
        }
    }
}

// in SQL
tableEnv.registerFunction("split", new SplitStringUDTF())
tableEnv.sql("SELECT a, b, t.* FROM MyTable CROSS APPLY split(c) AS t(w,l)")

// in Java Table API
tableEnv.registerFunction("split", new SplitStringUDTF())
// rename split table columns to “w” and “l”
table.crossApply("split(c)", "w, l")    
     .select("a, b, w, l")
// without renaming, we will use the origin field names in the POJO/case/...
table.crossApply("split(c)")
     .select("a, b, word, length")

// in Scala Table API
val split = new SplitStringUDTF()
table.crossApply(split('c), 'w, 'l)
     .select('a, 'b, 'w, 'l)
// outerApply for outer join to a UDTF
table.outerApply(split('c))
     .select('a, 'b, 'word, 'length)
{code}

Here we introduce CROSS/OUTER APPLY keywords to join table functions , which is 
used in SQL Server. We can discuss the API in the comment. 

Maybe the {{UDTF}} class should be replaced by {{TableFunction}} or something 
others, because we have introduced {{ScalarFunction}} for custom functions, we 
need to keep consistent. Although, I prefer {{UDTF}} rather than 
{{TableFunction}} as the former is more SQL-like and the latter maybe confused 
with DataStream functions. 

**This issue is blocked by CALCITE-1309, so we need to wait Calcite fix this 
and release.**

See [1] for more information about UDTF design.

[1] 
https://docs.google.com/document/d/15iVc1781dxYWm3loVQlESYvMAxEzbbuVFPZWBYuY1Ek/edit#





> Add support for user defined table function in Table API & SQL
> --------------------------------------------------------------
>
>                 Key: FLINK-4469
>                 URL: https://issues.apache.org/jira/browse/FLINK-4469
>             Project: Flink
>          Issue Type: New Feature
>          Components: Table API & SQL
>            Reporter: Jark Wu
>            Assignee: Jark Wu
>
> Normal user-defined functions, such as concat(), take in a single input row 
> and output a single output row. In contrast, table-generating functions 
> transform a single input row to multiple output rows. It is very useful in 
> some cases, such as look up in HBase by rowkey and return one or more rows.
> Adding a user defined table function should:
> 1. inherit from UDTF class with specific generic type T
> 2. define one or more evel function. 
> NOTE: 
> 1. the eval method must be public and non-static.
> 2. the generic type T is the row type returned by table function. Because of 
> Java type erasure, we can’t extract T from the Iterable.
> 3. use {{collect(T)}} to emit table row
> 4. eval method can be overload. Blink will choose the best match eval method 
> to call according to parameter types and number.
> {code}
> public class Word {
>   public String word;
>   public Integer length;
> }
> public class SplitStringUDTF extends UDTF<Word> {
>     public Iterable<Word> eval(String str) {
>         if (str != null) {
>             for (String s : str.split(",")) {
>                 collect(new Word(s, s.length()));
>             }
>         }
>     }
> }
> // in SQL
> tableEnv.registerFunction("split", new SplitStringUDTF())
> tableEnv.sql("SELECT a, b, t.* FROM MyTable, LATERAL TABLE(split(c)) AS 
> t(w,l)")
> // in Java Table API
> tableEnv.registerFunction("split", new SplitStringUDTF())
> // rename split table columns to “w” and “l”
> table.crossApply("split(c)", "w, l")  
>      .select("a, b, w, l")
> // without renaming, we will use the origin field names in the POJO/case/...
> table.crossApply("split(c)")
>      .select("a, b, word, length")
> // in Scala Table API
> val split = new SplitStringUDTF()
> table.crossApply(split('c), 'w, 'l)
>      .select('a, 'b, 'w, 'l)
> // outerApply for outer join to a UDTF
> table.outerApply(split('c))
>      .select('a, 'b, 'word, 'length)
> {code}
> See [1] for more information about UDTF design.
> [1] 
> https://docs.google.com/document/d/15iVc1781dxYWm3loVQlESYvMAxEzbbuVFPZWBYuY1Ek/edit#



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

Reply via email to