[
https://issues.apache.org/jira/browse/FLINK-4613?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15650663#comment-15650663
]
ASF GitHub Bot commented on FLINK-4613:
---------------------------------------
Github user thvasilo commented on the issue:
https://github.com/apache/flink/pull/2542
Hello @gaborhermann,
Yes I think you are right in that respect, just wanted to note that we
should perform some comparative benchmarks in the future.
So the benchmarks look good IMHO, we now need to address the couple of
comments I had, namely splitting up the tests and deciphering why a
`java.Iterable` was used in that spot if possible.
I was also wondering: For the expected results in the test, where did you
get the reference data?
> Extend ALS to handle implicit feedback datasets
> -----------------------------------------------
>
> Key: FLINK-4613
> URL: https://issues.apache.org/jira/browse/FLINK-4613
> Project: Flink
> Issue Type: New Feature
> Components: Machine Learning Library
> Reporter: Gábor Hermann
> Assignee: Gábor Hermann
>
> The Alternating Least Squares implementation should be extended to handle
> _implicit feedback_ datasets. These datasets do not contain explicit ratings
> by users, they are rather built by collecting user behavior (e.g. user
> listened to artist X for Y minutes), and they require a slightly different
> optimization objective. See details by [Hu et
> al|http://dx.doi.org/10.1109/ICDM.2008.22].
> We do not need to modify much in the original ALS algorithm. See [Spark ALS
> implementation|https://github.com/apache/spark/blob/master/mllib/src/main/scala/org/apache/spark/ml/recommendation/ALS.scala],
> which could be a basis for this extension. Only the updating factor part is
> modified, and most of the changes are in the local parts of the algorithm
> (i.e. UDFs). In fact, the only modification that is not local, is
> precomputing a matrix product Y^T * Y and broadcasting it to all the nodes,
> which we can do with broadcast DataSets.
--
This message was sent by Atlassian JIRA
(v6.3.4#6332)