mxm commented on code in PR #711:
URL: 
https://github.com/apache/flink-kubernetes-operator/pull/711#discussion_r1399140704


##########
flink-autoscaler/src/main/java/org/apache/flink/autoscaler/ScalingTracking.java:
##########
@@ -0,0 +1,168 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements.  See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License.  You may obtain a copy of the License at
+ *
+ *     http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.flink.autoscaler;
+
+import org.apache.flink.annotation.Experimental;
+import org.apache.flink.autoscaler.config.AutoScalerOptions;
+import org.apache.flink.autoscaler.topology.JobTopology;
+import org.apache.flink.configuration.Configuration;
+import org.apache.flink.runtime.jobgraph.JobVertexID;
+
+import com.fasterxml.jackson.annotation.JsonIgnore;
+import lombok.Builder;
+import lombok.Data;
+import lombok.NoArgsConstructor;
+
+import java.time.Duration;
+import java.time.Instant;
+import java.util.Map;
+import java.util.Map.Entry;
+import java.util.Optional;
+import java.util.SortedMap;
+import java.util.TreeMap;
+import java.util.stream.Collectors;
+
+/** Stores rescaling related information for the job. */
+@Experimental
+@Data
+@NoArgsConstructor
+@Builder
+public class ScalingTracking {
+
+    /** Details related to recent rescaling operations. */
+    private final TreeMap<Instant, ScalingRecord> scalingRecords = new 
TreeMap<>();
+
+    public void addScalingRecord(Instant startTimestamp, ScalingRecord 
scalingRecord) {
+        scalingRecords.put(startTimestamp, scalingRecord);
+    }
+
+    @JsonIgnore
+    public Optional<Entry<Instant, ScalingRecord>> 
getLatestScalingRecordEntry() {
+        if (!scalingRecords.isEmpty()) {
+            return Optional.of(scalingRecords.lastEntry());
+        } else {
+            return Optional.empty();
+        }
+    }
+
+    /**
+     * Sets the end time for the latest scaling record if its parallelism 
matches the current job
+     * parallelism.
+     *
+     * @param now The current instant to be set as the end time of the scaling 
record.
+     * @param jobTopology The current job topology containing details of the 
job's parallelism.
+     * @param scalingHistory The scaling history.
+     * @return true if the end time is successfully set, false if the end time 
is already set, the
+     *     latest scaling record cannot be found, or the target parallelism 
does not match the
+     *     actual parallelism.
+     */
+    public boolean setEndTimeIfTrackedAndParallelismMatches(
+            Instant now,
+            JobTopology jobTopology,
+            Map<JobVertexID, SortedMap<Instant, ScalingSummary>> 
scalingHistory) {
+        return getLatestScalingRecordEntry()
+                .map(
+                        entry -> {
+                            var value = entry.getValue();
+                            var scalingTimestamp = entry.getKey();
+                            if (value.getEndTime() == null) {
+                                var targetParallelism =
+                                        getTargetParallelismOfScaledVertices(
+                                                scalingTimestamp, 
scalingHistory);
+                                var actualParallelism = 
jobTopology.getParallelisms();
+
+                                if (targetParallelismMatchesActual(
+                                        targetParallelism, actualParallelism)) 
{
+                                    value.setEndTime(now);
+                                    return true;
+                                }
+                            }
+                            return false;
+                        })
+                .orElse(false);
+    }
+
+    private static Map<JobVertexID, Integer> 
getTargetParallelismOfScaledVertices(
+            Instant scalingTimestamp,
+            Map<JobVertexID, SortedMap<Instant, ScalingSummary>> 
scalingHistory) {
+        return scalingHistory.entrySet().stream()
+                .filter(entry -> 
entry.getValue().containsKey(scalingTimestamp))
+                .collect(
+                        Collectors.toMap(
+                                Map.Entry::getKey,
+                                entry ->
+                                        entry.getValue()
+                                                .get(scalingTimestamp)
+                                                .getNewParallelism()));
+    }
+
+    private static boolean targetParallelismMatchesActual(
+            Map<JobVertexID, Integer> targetParallelisms,
+            Map<JobVertexID, Integer> actualParallelisms) {
+        return targetParallelisms.entrySet().stream()
+                .allMatch(
+                        entry -> {
+                            var vertexID = entry.getKey();
+                            var targetParallelism = entry.getValue();
+                            var actualParallelism = 
actualParallelisms.getOrDefault(vertexID, -1);
+                            return actualParallelism.equals(targetParallelism);

Review Comment:
   I think we only exclude vertices when we generate the `ScalingSummary`. I 
just want to make sure this logic works, when there are excluded vertices 
because those would not be scaled and could be set to a different parallelism 
for other reasons. Just something to double-check.



##########
flink-autoscaler/src/main/java/org/apache/flink/autoscaler/JobAutoScalerImpl.java:
##########
@@ -159,19 +161,24 @@ private void runScalingLogic(Context ctx, 
AutoscalerFlinkMetrics autoscalerMetri
             throws Exception {
 
         var collectedMetrics = metricsCollector.updateMetrics(ctx, stateStore);
+        var jobTopology = collectedMetrics.getJobTopology();
 
         if (collectedMetrics.getMetricHistory().isEmpty()) {
             return;
         }
         LOG.debug("Collected metrics: {}", collectedMetrics);
 
-        var evaluatedMetrics = evaluator.evaluate(ctx.getConfiguration(), 
collectedMetrics);
+        var now = clock.instant();
+        // Scaling tracking data contains previous restart times that are 
taken into account
+        var scalingTracking = getTrimmedScalingTracking(stateStore, ctx, now);
+        var evaluatedMetrics =
+                evaluator.evaluate(ctx.getConfiguration(), collectedMetrics, 
scalingTracking);

Review Comment:
   Sorry, small correction: I meant `evaluatedMetrics`, not `collectedMetrics`.
   
   We don't need to associate the history entry with any of the metrics used 
for scaling. We would insert into the evaluated metrics map whatever the 
current determined rescale time is. This is similar to the MAX_PARALLELISM 
metric. 



-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]

Reply via email to