Wouter Zorgdrager created FLINK-35290:
-----------------------------------------
Summary: Wrong Instant type conversion TableAPI to Datastream in
thread mode
Key: FLINK-35290
URL: https://issues.apache.org/jira/browse/FLINK-35290
Project: Flink
Issue Type: Bug
Components: API / Python
Affects Versions: 1.18.1
Reporter: Wouter Zorgdrager
In PyFlink, if you convert a table with a `TIMESTAMP_LTZ(3)` type into a
Datastream, we get an `pyflink.common.time.Instant` type. First of all, I'm
wondering if this is expected behavior as in the TableAPI, `TIMESTAMP_LTZ` maps
to a Python `datetime`. Can't the same be done for the DatastreamAPI?
Nevertheless, if we switch from `process` to `thread` mode for execution, the
`TIMESTAMP_LTZ(3)` gets mapped to `pemja.PyJObject' (which wraps a
`java.time.Instant`) rather than `pyflink.common.time.Instant`. Note that if I
only use the DatastreamAPI and read `Types.Instant()` directly, the conversion
in both `thread` and `process` mode seem to work just fine.
Below a minimal example exposing the bug:
```
EXECUTION_MODE = "thread" # or "process"
config = Configuration()
config.set_string("python.execution-mode", EXECUTION_MODE)
env = StreamExecutionEnvironment.get_execution_environment()
t_env = StreamTableEnvironment.create(env)
t_env.get_config().set("parallelism.default", "1")
t_env.get_config().set("python.fn-execution.bundle.size", "1")
t_env.get_config().set("python.execution-mode", EXECUTION_MODE)
def to_epoch_ms(row: Row):
print(type(row[1]))
return row[1].to_epoch_milli()
t_env.to_data_stream(
t_env.from_elements(
[
(1, datetime(year=2024, day=10, month=9, hour=9)),
(2, datetime(year=2024, day=10, month=9, hour=12)),
(3, datetime(year=2024, day=22, month=11, hour=12)),
],
DataTypes.ROW(
[
DataTypes.FIELD("id", DataTypes.INT()),
DataTypes.FIELD("timestamp", DataTypes.TIMESTAMP_LTZ(3)),
]
),
)
).map(to_epoch_ms, output_type=Types.LONG()).print()
env.execute()
```
--
This message was sent by Atlassian Jira
(v8.20.10#820010)