[
https://issues.apache.org/jira/browse/FLINK-38162?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=18039831#comment-18039831
]
Nic Townsend commented on FLINK-38162:
--------------------------------------
Note - this seems to be fixed in Flink 1.20.2
> Use of SQL functions with time attributes causes downstream temporal
> functions to fail
> --------------------------------------------------------------------------------------
>
> Key: FLINK-38162
> URL: https://issues.apache.org/jira/browse/FLINK-38162
> Project: Flink
> Issue Type: Bug
> Components: Table SQL / Planner
> Affects Versions: 1.20.0, 2.1.0
> Reporter: Nic Townsend
> Priority: Minor
> Attachments: SQLSubmitter.java
>
>
> In the Flink docs for window join -
> [https://nightlies.apache.org/flink/flink-docs-master/docs/dev/table/sql/queries/window-join/#innerleftrightfull-outer]
> - it uses {{COALESCE}} in a FULL JOIN to ensure the row has a value for
> {{window_start}} and {{window_end}}.
> However, the example omits {{window_time}} from the result - which is needed
> for downstream re-windowing, or cascading windows
> ([https://nightlies.apache.org/flink/flink-docs-master/docs/dev/table/sql/queries/window-agg/#cascading-window-aggregation).]
> An example use case might be "I have a two phased commit process - and I want
> to know how many transactions in a window were just LEFT, how many were
> RIGHT, and how many were COMPLETE". It possibly is very niche - the problem
> is that adding in {{window_time}} causes a series of different errors to
> occur with downstream operators.
> I have created a basic Java reproduce at
> https://github.com/nictownsend/flink-explorations/tree/eeb0898558f733576751f5c52b1d8fd691c956a5/FLINK-38162
> h4. Problem 1:
> If you use {{COALESCE}} for {{window_time}}, a {{DESCRIBE}} will show the
> column as being {{ROWTIME}}:
> {code:java}
> +----------+------------------------+------+-----+--------+----------------------------------+
> | name | type | null | key | extras |
> watermark |
> +----------+------------------------+------+-----+--------+----------------------------------+
> | window_time | TIMESTAMP(3) *ROWTIME* | true | | | | {code}
> But - if you use a Windowing TVF on the results of the join, Flink throws an
> error that {{window_time}} is not a time attribute.
> This is (I assume) due to the use of {{COALESCE}}:
> [https://nightlies.apache.org/flink/flink-docs-release-2.0/docs/dev/table/concepts/time_attributes/#introduction-to-time-attributes]
> says:
> > As long as a time attribute is not modified, and is simply forwarded from
> > one part of a query to another, it remains a valid time attribute. Time
> > attributes behave like regular timestamps, and are accessible for
> > calculations. When used in calculations, time attributes are materialized
> > and act as standard timestamps. However, ordinary timestamps cannot be used
> > in place of, or be converted to, time attributes.
> This is reflected in the plan - where I can see that the inputs to
> {{COALESCE}} are {{CAST}} first:
> {{COALESCE(CAST(window_time AS TIMESTAMP_WITH_LOCAL_TIME_ZONE(3)),
> CAST(window_time0 AS TIMESTAMP_WITH_LOCAL_TIME_ZONE(3)))}}
> h4. Problem 2:
> If you try to use cascading windows and perform window aggregation after the
> join, you do not get a windowed aggregate. Instead, the planner will create
> an unbounded aggregate. As with problem 1, the assumption based off
> ([https://nightlies.apache.org/flink/flink-docs-master/docs/dev/table/sql/queries/window-agg/#cascading-window-aggregation)]
> is that the time attribute has not propagated, so the window does not
> cascade.
> The Physical plan shows that it's created a {{GroupAggregate}} after the
> {{Calc}} from the {{WindowJoin}}. Also, the {{Calc}} is performing a {{CAST}}
> on {{window_time}} into {{TIMESTAMP_WITH_LOCAL_TIME_ZONE}}.
> {code}
> +- Calc(select=[CAST(agg_window_start AS TIMESTAMP(9)) AS window_start,
> CAST(agg_window_end AS TIMESTAMP(9)) AS window_end, CAST(agg_window_time AS
> TIMESTAMP_WITH_LOCAL_TIME_ZONE(6)) AS window_time, CAST(l_version_count AS
> BIGINT) AS l_version_count, CAST(r_version_count AS BIGINT) AS
> r_version_count], changelogMode=[I,UA])
> +- GroupAggregate(groupBy=[agg_window_start, agg_window_end,
> agg_window_time], select=[agg_window_start, agg_window_end, agg_window_time,
> COUNT(l_version) AS l_version_count, COUNT(r_version) AS r_version_count],
> changelogMode=[I,UA])
> +- Exchange(distribution=[hash[agg_window_start, agg_window_end,
> agg_window_time]], changelogMode=[I])
> +- Calc(select=[COALESCE(window_start, window_start0) AS
> agg_window_start, COALESCE(window_end, window_end0) AS agg_window_end,
> COALESCE(CAST(window_time AS TIMESTAMP_WITH_LOCAL_TIME_ZONE(3)),
> CAST(window_time0 AS TIMESTAMP_WITH_LOCAL_TIME_ZONE(3))) AS agg_window_time,
> version AS l_version, version0 AS r_version], changelogMode=[I])
> +- WindowJoin(leftWindow=[TUMBLE(win_start=[window_start],
> win_end=[window_end], size=[5 s])],
> rightWindow=[TUMBLE(win_start=[window_start], win_end=[window_end], size=[5
> s])], joinType=[FullOuterJoin], where=[AND(=(version, version0),
> =(window_time, window_time0))], select=[version, window_start, window_end,
> window_time, version0, window_start0, window_end0, window_time0],
> changelogMode=[I])
> {code}
> If I change to a LEFT JOIN then the Physical plan changes - the {{Calc}}
> after the {{WindowJoin}} no longer has a {{COALESCE}} or {{CAST}}, and then
> you get a {{LocalWindowAggregate}} generated from the {{Calc}}:
> {code}
> +- Calc(select=[CAST(window_start AS TIMESTAMP(9)) AS window_start,
> CAST(window_end AS TIMESTAMP(9)) AS window_end, CAST(CAST(window_time AS
> TIMESTAMP_WITH_LOCAL_TIME_ZONE(3) NOT NULL) AS
> TIMESTAMP_WITH_LOCAL_TIME_ZONE(6)) AS window_time, CAST(l_version_count AS
> BIGINT) AS l_version_count, CAST(r_version_count AS BIGINT) AS
> r_version_count], changelogMode=[I])
> +- GlobalWindowAggregate(window=[TUMBLE(win_end=[$window_end], size=[5
> s])], select=[COUNT(count$0) AS l_version_count, COUNT(count$1) AS
> r_version_count, start('w$) AS window_start, end('w$) AS window_end,
> rowtime('w$) AS window_time], changelogMode=[I])
> +- Exchange(distribution=[single], changelogMode=[I])
> +- LocalWindowAggregate(window=[TUMBLE(win_start=[agg_window_start],
> win_end=[agg_window_end], size=[5 s])], select=[COUNT(l_version) AS count$0,
> COUNT(r_version) AS count$1, slice_end('w$) AS $window_end],
> changelogMode=[I])
> +- Calc(select=[window_start AS agg_window_start, window_end AS
> agg_window_end, window_time AS agg_window_time, version AS l_version,
> version0 AS r_version], changelogMode=[I])
> +- WindowJoin(leftWindow=[TUMBLE(win_start=[window_start],
> win_end=[window_end], size=[5 s])],
> rightWindow=[TUMBLE(win_start=[window_start], win_end=[window_end], size=[5
> s])], joinType=[LeftOuterJoin], where=[AND(=(version, version0),
> =(window_time, window_time0))], select=[version, window_start, window_end,
> window_time, version0, window_start0, window_end0, window_time0],
> changelogMode=[I])
> {code}
> h4. Problem 3:
> If you try to use cascading window aggregation, but also include a statement
> set to {{insert}} the results of the join and the aggregate into separate
> sinks, then you get a Calcite error:
> {code:java}
> java.lang.RuntimeException: Error while applying rule ProjectToCalcRule, args
> [rel#1277:LogicalProject.NONE.any.None:
> 0.[NONE].[NONE](input=RelSubset#1276,exprs=[$2, $3, $4, $0, $1])]
> at
> org.apache.calcite.plan.volcano.VolcanoRuleCall.onMatch(VolcanoRuleCall.java:250)
> at
> org.apache.calcite.plan.volcano.IterativeRuleDriver.drive(IterativeRuleDriver.java:59)
> at
> org.apache.calcite.plan.volcano.VolcanoPlanner.findBestExp(VolcanoPlanner.java:523)
> at
> org.apache.calcite.tools.Programs$RuleSetProgram.run(Programs.java:318)
> at
> org.apache.flink.table.planner.plan.optimize.program.FlinkVolcanoProgram.optimize(FlinkVolcanoProgram.scala:62)
> at
> org.apache.flink.table.planner.plan.optimize.program.FlinkChainedProgram.$anonfun$optimize$1(FlinkChainedProgram.scala:59)
> at
> scala.collection.TraversableOnce.$anonfun$foldLeft$1(TraversableOnce.scala:156)
> at
> scala.collection.TraversableOnce.$anonfun$foldLeft$1$adapted(TraversableOnce.scala:156)
> at scala.collection.Iterator.foreach(Iterator.scala:937)
> at scala.collection.Iterator.foreach$(Iterator.scala:937)
> at scala.collection.AbstractIterator.foreach(Iterator.scala:1425)
> at scala.collection.IterableLike.foreach(IterableLike.scala:70)
> at scala.collection.IterableLike.foreach$(IterableLike.scala:69)
> at scala.collection.AbstractIterable.foreach(Iterable.scala:54)
> at
> scala.collection.TraversableOnce.foldLeft(TraversableOnce.scala:156)
> at
> scala.collection.TraversableOnce.foldLeft$(TraversableOnce.scala:154)
> at
> scala.collection.AbstractTraversable.foldLeft(Traversable.scala:104)
> at
> org.apache.flink.table.planner.plan.optimize.program.FlinkChainedProgram.optimize(FlinkChainedProgram.scala:55)
> at
> org.apache.flink.table.planner.plan.optimize.StreamCommonSubGraphBasedOptimizer.optimizeTree(StreamCommonSubGraphBasedOptimizer.scala:196)
> at
> org.apache.flink.table.planner.plan.optimize.StreamCommonSubGraphBasedOptimizer.optimizeBlock(StreamCommonSubGraphBasedOptimizer.scala:143)
> at
> org.apache.flink.table.planner.plan.optimize.StreamCommonSubGraphBasedOptimizer.$anonfun$optimizeSinkBlocks$2(StreamCommonSubGraphBasedOptimizer.scala:89)
> at
> org.apache.flink.table.planner.plan.optimize.StreamCommonSubGraphBasedOptimizer.$anonfun$optimizeSinkBlocks$2$adapted(StreamCommonSubGraphBasedOptimizer.scala:89)
> at
> scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:58)
> at
> scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:51)
> at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
> at
> org.apache.flink.table.planner.plan.optimize.StreamCommonSubGraphBasedOptimizer.optimizeSinkBlocks(StreamCommonSubGraphBasedOptimizer.scala:89)
> at
> org.apache.flink.table.planner.plan.optimize.StreamCommonSubGraphBasedOptimizer.doOptimize(StreamCommonSubGraphBasedOptimizer.scala:118)
> at
> org.apache.flink.table.planner.plan.optimize.CommonSubGraphBasedOptimizer.optimize(CommonSubGraphBasedOptimizer.scala:87)
> at
> org.apache.flink.table.planner.delegation.PlannerBase.optimize(PlannerBase.scala:320)
> at
> org.apache.flink.table.planner.delegation.PlannerBase.getExplainGraphs(PlannerBase.scala:534)
> at
> org.apache.flink.table.planner.delegation.StreamPlanner.explain(StreamPlanner.scala:103)
> at
> org.apache.flink.table.planner.delegation.StreamPlanner.explain(StreamPlanner.scala:51)
> at
> org.apache.flink.table.api.internal.TableEnvironmentImpl.explainInternal(TableEnvironmentImpl.java:697)
> at
> org.apache.flink.table.api.internal.StatementSetImpl.explain(StatementSetImpl.java:103)
> at org.apache.flink.table.api.Explainable.explain(Explainable.java:40)
> at com.example.SQLSubmitter.twoInserts(SQLSubmitter.java:156)
> at com.example.SQLSubmitter.main(SQLSubmitter.java:134)
> Caused by: java.lang.RuntimeException: Error occurred while applying rule
> ProjectToCalcRule
> at
> org.apache.calcite.plan.volcano.VolcanoRuleCall.transformTo(VolcanoRuleCall.java:157)
> at
> org.apache.calcite.plan.RelOptRuleCall.transformTo(RelOptRuleCall.java:269)
> at
> org.apache.calcite.plan.RelOptRuleCall.transformTo(RelOptRuleCall.java:284)
> at
> org.apache.calcite.rel.rules.ProjectToCalcRule.onMatch(ProjectToCalcRule.java:72)
> at
> org.apache.calcite.plan.volcano.VolcanoRuleCall.onMatch(VolcanoRuleCall.java:223)
> ... 36 more
> Caused by: java.lang.IllegalArgumentException: Type mismatch:
> rel rowtype: RecordType(TIMESTAMP(3) agg_window_start, TIMESTAMP(3)
> agg_window_end, TIMESTAMP_WITH_LOCAL_TIME_ZONE(3) agg_window_time,
> VARCHAR(2147483647) CHARACTER SET "UTF-16LE" l_version, VARCHAR(2147483647)
> CHARACTER SET "UTF-16LE" r_version) NOT NULL
> equiv rowtype: RecordType(TIMESTAMP(3) agg_window_start, TIMESTAMP(3)
> agg_window_end, TIMESTAMP_LTZ(3) *ROWTIME* agg_window_time,
> VARCHAR(2147483647) CHARACTER SET "UTF-16LE" l_version, VARCHAR(2147483647)
> CHARACTER SET "UTF-16LE" r_version) NOT NULL
> Difference:
> agg_window_time: TIMESTAMP_WITH_LOCAL_TIME_ZONE(3) -> TIMESTAMP_LTZ(3)
> *ROWTIME*
> at
> org.apache.calcite.plan.volcano.VolcanoPlanner.register(VolcanoPlanner.java:592)
> at
> org.apache.calcite.plan.volcano.VolcanoPlanner.ensureRegistered(VolcanoPlanner.java:613)
> at
> org.apache.calcite.plan.volcano.VolcanoRuleCall.transformTo(VolcanoRuleCall.java:144)
> ... 40 more
> {code}
> h4. Expected behaviour:
> A window join is created by an equijoin of {{window_start}} and
> {{window_end}} - which doesn't by definition include {{window_time}}.
> However, the equijoin means that both sides of the join will have the same
> value for {{window_end}}. Additionally, the window TVF will not return null.
> As such, when {{window_time}} is included in the output of the join via
> {{COALESCE}}, the value can never be null.
> As a result - the time attribute should be propagated correctly when using
> {{COALESCE}} on a window FULL JOIN.
--
This message was sent by Atlassian Jira
(v8.20.10#820010)