Github user fhueske commented on a diff in the pull request:

    https://github.com/apache/flink/pull/3364#discussion_r104515406
  
    --- Diff: 
flink-libraries/flink-table/src/main/scala/org/apache/flink/table/plan/nodes/dataset/DataSetWindowAggregate.scala
 ---
    @@ -280,6 +285,138 @@ class DataSetWindowAggregate(
         }
       }
     
    +  private def createEventTimeSlidingWindowDataSet(
    +      inputDS: DataSet[Row],
    +      isTimeWindow: Boolean,
    +      isParserCaseSensitive: Boolean)
    +    : DataSet[Row] = {
    +
    +    // create MapFunction for initializing the aggregations
    +    // it aligns the rowtime for pre-tumbling in case of a time-window for 
incremental aggregates
    +    val mapFunction = createDataSetWindowPrepareMapFunction(
    +      window,
    +      namedAggregates,
    +      grouping,
    +      inputType,
    +      isParserCaseSensitive)
    +
    +    val mappedDataSet = inputDS
    +      .map(mapFunction)
    +      .name(prepareOperatorName)
    +
    +    val mapReturnType = mappedDataSet.getType
    +
    +    val rowTypeInfo = FlinkTypeFactory.toInternalRowTypeInfo(getRowType)
    +    val groupingKeys = grouping.indices.toArray
    +
    +    // do incremental aggregation if possible
    +    val isIncremental = doAllSupportPartialAggregation(
    +      namedAggregates.map(_.getKey),
    +      inputType,
    +      grouping.length)
    +
    +    val preparedDataSet = if (isTimeWindow) {
    +      // time window
    +
    +      if (isIncremental) {
    +        // incremental aggregates
    +
    +        val groupingKeysAndAlignedRowtime = groupingKeys :+ 
mapReturnType.getArity - 1
    +
    +        // create GroupReduceFunction
    +        // for pre-tumbling and replicating/omitting the content for each 
pane
    +        val prepareReduceFunction = 
createDataSetSlideWindowPrepareGroupReduceFunction(
    +          window,
    +          namedAggregates,
    +          grouping,
    +          inputType,
    +          isParserCaseSensitive)
    +
    +        mappedDataSet.asInstanceOf[DataSet[Row]]
    +          .groupBy(groupingKeysAndAlignedRowtime: _*)
    +          .reduceGroup(prepareReduceFunction) // pre-tumbles and 
replicates/omits
    +          .name(prepareOperatorName)
    +      } else {
    +        // non-incremental aggregates
    +
    +        // create FlatMapFunction
    +        // for replicating/omitting the content for each pane
    +        val prepareFlatMapFunction = 
createDataSetSlideWindowPrepareFlatMapFunction(
    +          window,
    +          namedAggregates,
    +          grouping,
    +          inputType,
    +          isParserCaseSensitive)
    +
    +        mappedDataSet
    +          .flatMap(prepareFlatMapFunction) // replicates/omits
    +      }
    +    } else {
    +      // count window
    --- End diff --
    
    Can we break this PR into time and count windows? There are so many cases 
to consider...


---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at [email protected] or file a JIRA ticket
with INFRA.
---

Reply via email to