[
https://issues.apache.org/jira/browse/FLINK-5653?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15926546#comment-15926546
]
ASF GitHub Bot commented on FLINK-5653:
---------------------------------------
Github user huawei-flink commented on a diff in the pull request:
https://github.com/apache/flink/pull/3547#discussion_r106220189
--- Diff:
flink-libraries/flink-table/src/main/scala/org/apache/flink/table/plan/nodes/datastream/DataStreamOverAggregate.scala
---
@@ -159,6 +168,42 @@ class DataStreamOverAggregate(
result
}
+def createBoundedAndCurrentRowProcessingTimeOverWindow(
+ inputDS: DataStream[Row]): DataStream[Row] = {
+
+ val overWindow: Group = logicWindow.groups.get(0)
+ val partitionKeys: Array[Int] = overWindow.keys.toArray
+ val namedAggregates: Seq[CalcitePair[AggregateCall, String]] =
generateNamedAggregates
+
+ // get the output types
+ val rowTypeInfo =
FlinkTypeFactory.toInternalRowTypeInfo(getRowType).asInstanceOf[RowTypeInfo]
+
+ val result: DataStream[Row] =
+ // partitioned aggregation
+ if (partitionKeys.nonEmpty) {
+ val windowFunction =
AggregateUtil.CreateBoundedProcessingOverWindowFunction(
+ namedAggregates,
+ inputType)
+
+ val lowerbound: Int = AggregateUtil.getLowerBoundary(
+ logicWindow.constants,
+ overWindow.lowerBound,
+ getInput())
+
+ inputDS
+ .keyBy(partitionKeys: _*)
+ .countWindow(lowerbound, 1).apply(windowFunction)
+ .returns(rowTypeInfo)
+ .name(aggOpName)
+ .asInstanceOf[DataStream[Row]]
+ } // global non-partitioned aggregation
+ else {
+ throw TableException(
--- End diff --
If needed, I can do it.
> Add processing time OVER ROWS BETWEEN x PRECEDING aggregation to SQL
> --------------------------------------------------------------------
>
> Key: FLINK-5653
> URL: https://issues.apache.org/jira/browse/FLINK-5653
> Project: Flink
> Issue Type: Sub-task
> Components: Table API & SQL
> Reporter: Fabian Hueske
> Assignee: Stefano Bortoli
>
> The goal of this issue is to add support for OVER ROWS aggregations on
> processing time streams to the SQL interface.
> Queries similar to the following should be supported:
> {code}
> SELECT
> a,
> SUM(b) OVER (PARTITION BY c ORDER BY procTime() ROWS BETWEEN 2 PRECEDING
> AND CURRENT ROW) AS sumB,
> MIN(b) OVER (PARTITION BY c ORDER BY procTime() ROWS BETWEEN 2 PRECEDING
> AND CURRENT ROW) AS minB
> FROM myStream
> {code}
> The following restrictions should initially apply:
> - All OVER clauses in the same SELECT clause must be exactly the same.
> - The PARTITION BY clause is optional (no partitioning results in single
> threaded execution).
> - The ORDER BY clause may only have procTime() as parameter. procTime() is a
> parameterless scalar function that just indicates processing time mode.
> - UNBOUNDED PRECEDING is not supported (see FLINK-5656)
> - FOLLOWING is not supported.
> The restrictions will be resolved in follow up issues. If we find that some
> of the restrictions are trivial to address, we can add the functionality in
> this issue as well.
> This issue includes:
> - Design of the DataStream operator to compute OVER ROW aggregates
> - Translation from Calcite's RelNode representation (LogicalProject with
> RexOver expression).
--
This message was sent by Atlassian JIRA
(v6.3.15#6346)