[
https://issues.apache.org/jira/browse/FLINK-5653?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15928956#comment-15928956
]
ASF GitHub Bot commented on FLINK-5653:
---------------------------------------
Github user fhueske commented on a diff in the pull request:
https://github.com/apache/flink/pull/3547#discussion_r106517628
--- Diff:
flink-libraries/flink-table/src/main/scala/org/apache/flink/table/plan/nodes/datastream/DataStreamOverAggregate.scala
---
@@ -130,32 +142,77 @@ class DataStreamOverAggregate(
val rowTypeInfo =
FlinkTypeFactory.toInternalRowTypeInfo(getRowType).asInstanceOf[RowTypeInfo]
val result: DataStream[Row] =
- // partitioned aggregation
- if (partitionKeys.nonEmpty) {
- val processFunction =
AggregateUtil.CreateUnboundedProcessingOverProcessFunction(
- namedAggregates,
- inputType)
+ // partitioned aggregation
+ if (partitionKeys.nonEmpty) {
+ val processFunction =
AggregateUtil.CreateUnboundedProcessingOverProcessFunction(
+ namedAggregates,
+ inputType)
- inputDS
+ inputDS
.keyBy(partitionKeys: _*)
.process(processFunction)
.returns(rowTypeInfo)
.name(aggOpName)
.asInstanceOf[DataStream[Row]]
- }
- // non-partitioned aggregation
- else {
- val processFunction =
AggregateUtil.CreateUnboundedProcessingOverProcessFunction(
- namedAggregates,
- inputType,
- false)
-
- inputDS
-
.process(processFunction).setParallelism(1).setMaxParallelism(1)
- .returns(rowTypeInfo)
- .name(aggOpName)
- .asInstanceOf[DataStream[Row]]
- }
+ } // non-partitioned aggregation
+ else {
+ val processFunction =
AggregateUtil.CreateUnboundedProcessingOverProcessFunction(
+ namedAggregates,
+ inputType,
+ false)
+
+ inputDS
+ .process(processFunction).setParallelism(1).setMaxParallelism(1)
+ .returns(rowTypeInfo)
+ .name(aggOpName)
+ .asInstanceOf[DataStream[Row]]
+ }
+ result
+ }
+
+ def createBoundedAndCurrentRowProcessingTimeOverWindow(
+ inputDS: DataStream[Row]): DataStream[Row] = {
+
+ val overWindow: Group = logicWindow.groups.get(0)
+ val partitionKeys: Array[Int] = overWindow.keys.toArray
+ val namedAggregates: Seq[CalcitePair[AggregateCall, String]] =
generateNamedAggregates
+
+ // get the output types
+ val rowTypeInfo =
FlinkTypeFactory.toInternalRowTypeInfo(getRowType).asInstanceOf[RowTypeInfo]
+
+ // window size is lowerbound +1 to comply with over semantics
+ val lowerbound: Int = AggregateUtil.getLowerBoundary(
+ logicWindow.constants,
+ overWindow.lowerBound,
+ getInput()) + 1
+
+ val result: DataStream[Row] =
+ // partitioned aggregation
+ if (partitionKeys.nonEmpty) {
+ val windowFunction =
AggregateUtil.CreateBoundedProcessingOverWindowFunction(
+ namedAggregates,
+ inputType)
+ inputDS
+ .keyBy(partitionKeys: _*)
+ .countWindow(lowerbound,1)
--- End diff --
`.countWindow(lowerbound, 1)` +space
> Add processing time OVER ROWS BETWEEN x PRECEDING aggregation to SQL
> --------------------------------------------------------------------
>
> Key: FLINK-5653
> URL: https://issues.apache.org/jira/browse/FLINK-5653
> Project: Flink
> Issue Type: Sub-task
> Components: Table API & SQL
> Reporter: Fabian Hueske
> Assignee: Stefano Bortoli
>
> The goal of this issue is to add support for OVER ROWS aggregations on
> processing time streams to the SQL interface.
> Queries similar to the following should be supported:
> {code}
> SELECT
> a,
> SUM(b) OVER (PARTITION BY c ORDER BY procTime() ROWS BETWEEN 2 PRECEDING
> AND CURRENT ROW) AS sumB,
> MIN(b) OVER (PARTITION BY c ORDER BY procTime() ROWS BETWEEN 2 PRECEDING
> AND CURRENT ROW) AS minB
> FROM myStream
> {code}
> The following restrictions should initially apply:
> - All OVER clauses in the same SELECT clause must be exactly the same.
> - The PARTITION BY clause is optional (no partitioning results in single
> threaded execution).
> - The ORDER BY clause may only have procTime() as parameter. procTime() is a
> parameterless scalar function that just indicates processing time mode.
> - UNBOUNDED PRECEDING is not supported (see FLINK-5656)
> - FOLLOWING is not supported.
> The restrictions will be resolved in follow up issues. If we find that some
> of the restrictions are trivial to address, we can add the functionality in
> this issue as well.
> This issue includes:
> - Design of the DataStream operator to compute OVER ROW aggregates
> - Translation from Calcite's RelNode representation (LogicalProject with
> RexOver expression).
--
This message was sent by Atlassian JIRA
(v6.3.15#6346)