Github user sunjincheng121 commented on a diff in the pull request:
https://github.com/apache/flink/pull/3590#discussion_r107443672
--- Diff:
flink-libraries/flink-table/src/main/scala/org/apache/flink/table/plan/nodes/datastream/DataStreamOverAggregate.scala
---
@@ -119,6 +150,57 @@ class DataStreamOverAggregate(
}
+ def createTimeBoundedProcessingTimeOverWindow(inputDS: DataStream[Row]):
DataStream[Row] = {
+
+ val overWindow: Group = logicWindow.groups.get(0)
+ val partitionKeys: Array[Int] = overWindow.keys.toArray
+ val namedAggregates: Seq[CalcitePair[AggregateCall, String]] =
generateNamedAggregates
+
+ val index =
overWindow.lowerBound.getOffset.asInstanceOf[RexInputRef].getIndex
+ val count = input.getRowType().getFieldCount()
+ val lowerboundIndex = index - count
+
+
+ val time_boundary =
logicWindow.constants.get(lowerboundIndex).getValue2 match {
+ case _: java.math.BigDecimal =>
logicWindow.constants.get(lowerboundIndex)
+ .getValue2.asInstanceOf[java.math.BigDecimal].longValue()
+ case _ => throw new TableException("OVER Window boundaries must be
numeric")
+ }
+
+ // get the output types
+ val rowTypeInfo =
FlinkTypeFactory.toInternalRowTypeInfo(getRowType).asInstanceOf[RowTypeInfo]
+
+ val result: DataStream[Row] =
+ // partitioned aggregation
+ if (partitionKeys.nonEmpty) {
+
+ val processFunction =
AggregateUtil.CreateTimeBoundedProcessingOverProcessFunction(
+ namedAggregates,
+ inputType,
+ time_boundary)
+
+ inputDS
+ .keyBy(partitionKeys: _*)
+ .process(processFunction)
+ .returns(rowTypeInfo)
+ .name(aggOpName)
+ .asInstanceOf[DataStream[Row]]
+ } else { // non-partitioned aggregation
+ val processFunction =
AggregateUtil.CreateTimeBoundedProcessingOverProcessFunction(
--- End diff --
When I do unbounded, this is really a dilemma. The reason for choosing
operatorState is that unbounded does not need to cache data in memory. IMO.
Event-time bounded case, we need to cache the data in memory(such as
`windowBuffer`), which in the production environment is a terrible
choice,Because there are millions of window data in our application scenario,
So, in this case I suggest using `keyBy(new NullByteKeySelector[Row])`. What do
you thinkï¼ @rtudoran @fhueske
Bestï¼
SunJincheng
---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at [email protected] or file a JIRA ticket
with INFRA.
---