Github user fhueske commented on a diff in the pull request:
https://github.com/apache/flink/pull/3386#discussion_r107609421
--- Diff:
flink-libraries/flink-table/src/test/scala/org/apache/flink/table/api/scala/stream/sql/SqlITCase.scala
---
@@ -317,4 +320,193 @@ class SqlITCase extends StreamingWithStateTestBase {
result.addSink(new StreamITCase.StringSink)
env.execute()
}
+
+ /** test sliding event-time unbounded window with partition by **/
+ @Test
+ def testUnboundedEventTimeRowWindowWithPartition(): Unit = {
+ val env = StreamExecutionEnvironment.getExecutionEnvironment
+ val tEnv = TableEnvironment.getTableEnvironment(env)
+ env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)
+ env.setStateBackend(getStateBackend)
+ StreamITCase.testResults = mutable.MutableList()
+ env.setParallelism(1)
+
+ val sqlQuery = "SELECT a, b, c, " +
+ "SUM(b) over (" +
+ "partition by a order by rowtime() range between unbounded preceding
and current row), " +
+ "count(b) over (" +
+ "partition by a order by rowtime() range between unbounded preceding
and current row), " +
+ "avg(b) over (" +
+ "partition by a order by rowtime() range between unbounded preceding
and current row), " +
+ "max(b) over (" +
+ "partition by a order by rowtime() range between unbounded preceding
and current row), " +
+ "min(b) over (" +
+ "partition by a order by rowtime() range between unbounded preceding
and current row) " +
+ "from T1"
+
+ val t1 = env.addSource[(Int, Long, String)](new SourceFunction[(Int,
Long, String)] {
+ override def run(ctx: SourceContext[(Int, Long, String)]): Unit = {
+ ctx.collectWithTimestamp((1, 1L, "Hi"), 14000005L)
+ ctx.collectWithTimestamp((2, 1L, "Hello"), 14000000L)
+ ctx.collectWithTimestamp((3, 1L, "Hello"), 14000002L)
+ ctx.collectWithTimestamp((1, 2L, "Hello"), 14000003L)
+ ctx.collectWithTimestamp((1, 3L, "Hello world"), 14000004L)
+ ctx.collectWithTimestamp((3, 2L, "Hello world"), 14000007L)
+ ctx.collectWithTimestamp((2, 2L, "Hello world"), 14000008L)
+ ctx.emitWatermark(new Watermark(14000010L))
+ ctx.collectWithTimestamp((1, 4L, "Hello world"), 14000008L)
+ ctx.collectWithTimestamp((2, 3L, "Hello world"), 14000008L)
+ ctx.collectWithTimestamp((3, 3L, "Hello world"), 14000008L)
+ ctx.collectWithTimestamp((1, 5L, "Hello world"), 14000012L)
+ ctx.emitWatermark(new Watermark(14000020L))
+ ctx.collectWithTimestamp((1, 6L, "Hello world"), 14000021L)
+ ctx.collectWithTimestamp((1, 6L, "Hello world"), 14000019L)
+ ctx.collectWithTimestamp((2, 4L, "Hello world"), 14000018L)
+ ctx.collectWithTimestamp((3, 4L, "Hello world"), 14000018L)
+ ctx.collectWithTimestamp((2, 5L, "Hello world"), 14000022L)
+ ctx.collectWithTimestamp((3, 5L, "Hello world"), 14000022L)
+ ctx.collectWithTimestamp((1, 7L, "Hello world"), 14000024L)
+ ctx.collectWithTimestamp((1, 8L, "Hello world"), 14000023L)
+ ctx.collectWithTimestamp((1, 9L, "Hello world"), 14000021L)
+ ctx.emitWatermark(new Watermark(14000030L))
+ }
+
+ override def cancel(): Unit = {}
+ }).toTable(tEnv).as('a, 'b, 'c)
+
+ tEnv.registerTable("T1", t1)
+
+ val result = tEnv.sql(sqlQuery).toDataStream[Row]
+ result.addSink(new StreamITCase.StringSink)
+ env.execute()
+
+ val expected = mutable.MutableList(
+ "1,2,Hello,2,1,2,2,2",
+ "1,3,Hello world,5,2,2,3,2",
+ "1,1,Hi,6,3,2,3,1",
+ "2,1,Hello,1,1,1,1,1",
+ "2,2,Hello world,3,2,1,2,1",
+ "3,1,Hello,1,1,1,1,1",
+ "3,2,Hello world,3,2,1,2,1",
+ "1,5,Hello world,11,4,2,5,1",
+ "1,6,Hello world,17,5,3,6,1",
+ "1,9,Hello world,26,6,4,9,1",
+ "1,8,Hello world,34,7,4,9,1",
+ "1,7,Hello world,41,8,5,9,1",
+ "2,5,Hello world,8,3,2,5,1",
+ "3,5,Hello world,8,3,2,5,1"
+ )
+ assertEquals(expected.sorted, StreamITCase.testResults.sorted)
+ }
+
+ /** test sliding event-time unbounded window without partitiion by **/
+ @Test
+ def testUnboundedEventTimeRowWindowWithoutPartition(): Unit = {
+ val env = StreamExecutionEnvironment.getExecutionEnvironment
+ val tEnv = TableEnvironment.getTableEnvironment(env)
+ env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)
+ env.setStateBackend(getStateBackend)
+ StreamITCase.testResults = mutable.MutableList()
+ env.setParallelism(1)
--- End diff --
I think you are right. If we have a parallelism of > 1, the watermarks
might advance later, so we would have less rows discarded as late data. This
makes the test non deterministic.
I think what we can do is to implement a test without late data and
increase the parallelism. That should work, IMO.
---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at [email protected] or file a JIRA ticket
with INFRA.
---