MehulBatra commented on code in PR #1640:
URL: https://github.com/apache/fluss/pull/1640#discussion_r2320891816


##########
website/docs/streaming-lakehouse/integrate-data-lakes/iceberg.md:
##########
@@ -0,0 +1,343 @@
+---
+title: Iceberg
+sidebar_position: 2
+---
+
+# Iceberg
+
+[Apache Iceberg](https://iceberg.apache.org/) is an open table format for huge 
analytic datasets. It provides ACID transactions, schema evolution, and 
efficient data organization for data lakes.
+To integrate Fluss with Iceberg, you must enable lakehouse storage and 
configure Iceberg as the lakehouse storage. For more details, see [Enable 
Lakehouse 
Storage](maintenance/tiered-storage/lakehouse-storage.md#enable-lakehouse-storage).
+
+## Introduction
+
+When a table is created or altered with the option `'table.datalake.enabled' = 
'true'` and configured with Iceberg as the datalake format, Fluss will 
automatically create a corresponding Iceberg table with the same table path.
+The schema of the Iceberg table matches that of the Fluss table, except for 
the addition of three system columns at the end: `__bucket`, `__offset`, and 
`__timestamp`.  
+These system columns help Fluss clients consume data from Iceberg in a 
streaming fashion, such as seeking by a specific bucket using an offset or 
timestamp.
+
+```sql title="Flink SQL"
+USE CATALOG fluss_catalog;
+
+CREATE TABLE fluss_order_with_lake (
+    `order_key` BIGINT,
+    `cust_key` INT NOT NULL,
+    `total_price` DECIMAL(15, 2),
+    `order_date` DATE,
+    `order_priority` STRING,
+    `clerk` STRING,
+    `ptime` AS PROCTIME(),
+    PRIMARY KEY (`order_key`) NOT ENFORCED
+ ) WITH (
+     'table.datalake.enabled' = 'true',
+     'table.datalake.freshness' = '30s'
+);
+```
+
+Then, the datalake tiering service continuously tiers data from Fluss to 
Iceberg. The parameter `table.datalake.freshness` controls the frequency that 
Fluss writes data to Iceberg tables. By default, the data freshness is 3 
minutes.  
+For primary key tables, changelogs are also generated in the Iceberg format, 
enabling stream-based consumption via Iceberg APIs. Primary key tables use 
merge-on-read (MOR) strategy for efficient updates and deletes.
+
+Since Fluss version 0.8, you can also specify Iceberg table properties when 
creating a datalake-enabled Fluss table by using the `iceberg.` prefix within 
the Fluss table properties clause.
+
+```sql title="Flink SQL"
+CREATE TABLE fluss_order_with_lake (
+    `order_key` BIGINT,
+    `cust_key` INT NOT NULL,
+    `total_price` DECIMAL(15, 2),
+    `order_date` DATE,
+    `order_priority` STRING,
+    `clerk` STRING,
+    `ptime` AS PROCTIME(),
+    PRIMARY KEY (`order_key`) NOT ENFORCED
+ ) WITH (
+     'table.datalake.enabled' = 'true',
+     'table.datalake.freshness' = '30s',
+     'table.datalake.auto-maintenance' = 'true',
+     'iceberg.write.format.default' = 'parquet',
+     'iceberg.commit.retry.num-retries' = '5'
+);
+```
+
+For example, you can specify the Iceberg property `write.format.default` to 
change the file format of the Iceberg table, or set `commit.retry.num-retries` 
to configure retry behavior for commits. The `table.datalake.auto-maintenance` 
option (true by default) enables automatic maintenance tasks such as file 
compaction and snapshot expiration.
+
+## Table Types and Bucketing Strategy
+
+Fluss uses a special bucketing strategy when integrating with Iceberg to 
ensure data distribution consistency between Fluss and Iceberg layers. This 
enables efficient data access and future union read capabilities.
+
+### Bucket Strategy
+
+When Iceberg is configured as the datalake format, Fluss uses 
`IcebergBucketingFunction` to bucket data following Iceberg's bucketing 
strategy. This ensures:
+- **Data distribution consistency**: The same record goes to the same bucket 
in both Fluss and Iceberg
+- **Efficient data access**: You can quickly locate data for a specific Fluss 
bucket within Iceberg
+- **Dynamic enablement**: Tables can be enabled for datalake without rewriting 
existing data
+
+### Primary Key Tables
+
+Primary key tables in Fluss are mapped to Iceberg tables with:
+- **Primary key constraints**: The Iceberg table maintains the same primary 
key definition
+- **Merge-on-read (MOR) strategy**: Updates and deletes are handled 
efficiently using Iceberg's MOR capabilities
+- **Required bucket keys**: Primary key tables must have exactly one bucket 
key defined
+- **Bucket partitioning**: Automatically partitioned by the bucket key using 
Iceberg's bucket transform
+
+```sql title="Primary Key Table Example"
+CREATE TABLE user_profiles (
+    `user_id` BIGINT,
+    `username` STRING,
+    `email` STRING,
+    `last_login` TIMESTAMP,
+    `profile_data` STRING,
+    PRIMARY KEY (`user_id`) NOT ENFORCED
+) WITH (
+    'table.datalake.enabled' = 'true',
+    'bucket.num' = '4',
+    'bucket.key' = 'user_id'
+);
+```
+
+**Corresponding Iceberg table structure:**
+```sql
+CREATE TABLE user_profiles (
+    user_id BIGINT,
+    username STRING,
+    email STRING,
+    last_login TIMESTAMP,
+    profile_data STRING,
+    __bucket INT,
+    __offset BIGINT,
+    __timestamp TIMESTAMP_LTZ,
+    PRIMARY KEY (user_id) NOT ENFORCED
+) PARTITIONED BY (bucket(user_id, 4))
+SORTED BY (__offset ASC);
+```
+
+### Log Tables (Append-Only)
+
+Log tables support different bucketing configurations:
+
+#### No Bucket Key
+For log tables without a configured bucket key, Iceberg uses identity 
partitioning on the `__bucket` system column:
+
+```sql title="Log Table without Bucket Key"
+CREATE TABLE access_logs (
+    `timestamp` TIMESTAMP,
+    `user_id` BIGINT,
+    `action` STRING,
+    `ip_address` STRING
+) WITH (
+    'table.datalake.enabled' = 'true',
+    'bucket.num' = '3'
+);
+```
+
+**Corresponding Iceberg table:**
+```sql
+CREATE TABLE access_logs (
+    timestamp TIMESTAMP,
+    user_id BIGINT,
+    action STRING,
+    ip_address STRING,
+    __bucket INT,
+    __offset BIGINT,
+    __timestamp TIMESTAMP_LTZ
+) PARTITIONED BY (IDENTITY(__bucket))
+SORTED BY (__offset ASC);
+```
+
+#### Single Bucket Key
+For log tables with one bucket key, Iceberg uses bucket partitioning:
+
+```sql title="Log Table with Bucket Key"
+CREATE TABLE order_events (
+    `order_id` BIGINT,
+    `item_id` BIGINT,
+    `amount` INT,
+    `event_time` TIMESTAMP
+) WITH (
+    'table.datalake.enabled' = 'true',
+    'bucket.num' = '5',
+    'bucket.key' = 'order_id'
+);
+```
+
+**Corresponding Iceberg table:**
+```sql
+CREATE TABLE order_events (
+    order_id BIGINT,
+    item_id BIGINT,
+    amount INT,
+    event_time TIMESTAMP,
+    __bucket INT,
+    __offset BIGINT,
+    __timestamp TIMESTAMP_LTZ
+) PARTITIONED BY (bucket(order_id, 5))
+SORTED BY (__offset ASC);
+```
+
+### Partitioned Tables
+
+For Fluss partitioned tables, Iceberg first partitions by Fluss partition 
keys, then by bucket keys:
+
+```sql title="Partitioned Table Example"
+CREATE TABLE daily_sales (
+    `sale_id` BIGINT,
+    `amount` DECIMAL(10,2),
+    `customer_id` BIGINT,
+    `sale_date` STRING,
+    PRIMARY KEY (`sale_id`) NOT ENFORCED
+) PARTITIONED BY (`sale_date`)
+WITH (
+    'table.datalake.enabled' = 'true',
+    'bucket.num' = '4',
+    'bucket.key' = 'sale_id'
+);
+```
+
+**Corresponding Iceberg table:**
+```sql
+CREATE TABLE daily_sales (
+    sale_id BIGINT,
+    amount DECIMAL(10,2),
+    customer_id BIGINT,
+    sale_date STRING,
+    __bucket INT,
+    __offset BIGINT,
+    __timestamp TIMESTAMP_LTZ,
+    PRIMARY KEY (sale_id) NOT ENFORCED
+) PARTITIONED BY (IDENTITY(sale_date), bucket(sale_id, 4))
+SORTED BY (__offset ASC);
+```
+
+## Read Tables
+
+### Reading with Apache Flink
+
+For a table with the option `'table.datalake.enabled' = 'true'` and Iceberg 
configured as the lakehouse storage, you can read data stored in Iceberg using 
the `$lake` suffix in the table name.
+
+#### Read Data Only in Iceberg
+
+To read only data stored in Iceberg, use the `$lake` suffix in the table name:
+
+```sql title="Flink SQL"
+-- Read from Iceberg
+SELECT COUNT(*) FROM orders$lake;
+```
+
+```sql title="Flink SQL"
+-- Query system tables
+SELECT * FROM orders$lake$snapshots;
+```
+
+When you specify the `$lake` suffix, the table behaves like a standard Iceberg 
table with full Iceberg capabilities including time travel, system tables, and 
more.
+
+#### Union Read Limitations
+
+**Important**: Iceberg does not currently support union read of data from both 
Fluss and Iceberg layers. You can only read data from:
+- **Fluss layer only**: Query the table directly without `$lake` suffix 
(real-time data)
+- **Iceberg layer only**: Query the table with `$lake` suffix (historical data)
+
+Union read functionality may be added in future releases.
+
+### Reading with other Engines
+
+Since data tiered to Iceberg from Fluss is stored as standard Iceberg tables, 
you can use any Iceberg-compatible engine. Below is an example using 
[StarRocks](https://docs.starrocks.io/docs/data_source/catalog/iceberg_catalog/):
+
+#### StarRocks with Hadoop Catalog
+
+```sql title="StarRocks SQL"
+CREATE EXTERNAL CATALOG iceberg_catalog
+PROPERTIES (
+    "type" = "iceberg",
+    "iceberg.catalog.type" = "hadoop",
+    "iceberg.catalog.warehouse" = "/tmp/iceberg_data_warehouse"
+);
+```
+
+```sql title="Query Examples"
+-- Basic query
+SELECT COUNT(*) FROM iceberg_catalog.fluss.orders;
+
+-- Time travel query
+SELECT * FROM iceberg_catalog.fluss.orders 
+FOR SYSTEM_VERSION AS OF 123456789;
+
+-- Query with bucket filtering for efficiency
+SELECT * FROM iceberg_catalog.fluss.orders 
+WHERE __bucket = 1 AND __offset >= 100;
+```
+
+#### StarRocks with Hive Catalog
+
+```sql title="StarRocks SQL with Hive Catalog"
+CREATE EXTERNAL CATALOG iceberg_catalog
+PROPERTIES (
+    "type" = "iceberg",
+    "iceberg.catalog.type" = "hive",
+    "hive.metastore.uris" = "thrift://<hive-metastore-host>:<port>",
+    "iceberg.catalog.warehouse" = "hdfs:///path/to/warehouse"
+);
+```
+
+> **NOTE**: The configuration values must match those used when configuring 
Iceberg as the lakehouse storage for Fluss in `server.yaml`.
+
+## Data Type Mapping
+
+When integrating with Iceberg, Fluss automatically converts between Fluss data 
types and Iceberg data types:
+
+| Fluss Data Type               | Iceberg Data Type             | Notes        
       |
+|-------------------------------|-------------------------------|---------------------|
+| BOOLEAN                       | BOOLEAN                       |              
       |
+| TINYINT                       | INTEGER                       | Promoted to 
INT     |
+| SMALLINT                      | INTEGER                       | Promoted to 
INT     |
+| INT                           | INTEGER                       |              
       |
+| BIGINT                        | LONG                          |              
       |
+| FLOAT                         | FLOAT                         |              
       |
+| DOUBLE                        | DOUBLE                        |              
       |
+| DECIMAL                       | DECIMAL                       |              
       |

Review Comment:
   I believe DECIMAL maps directly to DECIMAL maintaining precision and scale.



-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: issues-unsubscr...@fluss.apache.org

For queries about this service, please contact Infrastructure at:
us...@infra.apache.org

Reply via email to