Andrew Purtell created HBASE-11482:
--------------------------------------

             Summary: Optimize HBase TableInputFormat and TableOutputFormat for 
tables and snapshots as Spark RDDs
                 Key: HBASE-11482
                 URL: https://issues.apache.org/jira/browse/HBASE-11482
             Project: HBase
          Issue Type: New Feature
            Reporter: Andrew Purtell


A core concept of Apache Spark is the resilient distributed dataset (RDD), a 
"fault-tolerant collection of elements that can be operated on in parallel". 
One can create a RDDs referencing a dataset in any external storage system 
offering a Hadoop InputFormat, like HBase's TableInputFormat and 
TableSnapshotInputFormat. 

Insure the integration is reasonable and provides good performance. 

Add the ability to save RDDs back to HBase with a {{saveAsHBaseTable}} action, 
implicitly creating necessary schema on demand.

Add support for {{filter}} transformations that push predicates down to the 
server as HBase filters. 

Consider supporting conversions between Scala and Java types and HBase data 
using the HBase types library.

Consider an option to lazily and automatically produce a snapshot only when 
needed, in a coordinated way. (Concurrently executing workers may want to 
materialize a table snapshot RDD at the same time.)



--
This message was sent by Atlassian JIRA
(v6.2#6252)

Reply via email to