Ben Manes commented on HBASE-15560:

The update latencies, except for average, were very similar. Since presumably 
not all entries fit in the cache then an update of a miss would trigger an 
eviction. It could be impact from the O(n lg n) Lru eviction thread, GC, or 
more coarse grained locking. Since this was run on a macbook rather than an 
isolated server, it could also be a background daemon kicking in. I think the 
important take away is not the absolute but that they are in the same ballpark. 
There isn't an outlier indicating the new implementation has a major 
degredation, e.g. due to locking or hit rates.

[~eshcar]: To more directly answer your question, the update cost is [very 
close|https://github.com/ben-manes/caffeine/wiki/Benchmarks#write-100-1] to 
ConcurrentHashMap. This is because the locking overhead dominates, leaving 
enough spare cpu cycles to mask any other penalties being processed 

[~anoopamz] In my original post the results mentioned were probably with no 
evictions. Because LruBlockCache penalizes only the eviction, whereas Caffeine 
spreads it out, one would expect Lru to have an advantage. But by Amdahl's law 
the potential speedup is very tiny, so it falls into the noise. A fresh test 
would be good.

> TinyLFU-based BlockCache
> ------------------------
>                 Key: HBASE-15560
>                 URL: https://issues.apache.org/jira/browse/HBASE-15560
>             Project: HBase
>          Issue Type: Improvement
>          Components: BlockCache
>    Affects Versions: 2.0.0
>            Reporter: Ben Manes
>            Assignee: Ben Manes
>         Attachments: HBASE-15560.patch, HBASE-15560.patch, HBASE-15560.patch, 
> HBASE-15560.patch, HBASE-15560.patch, HBASE-15560.patch, HBASE-15560.patch, 
> tinylfu.patch
> LruBlockCache uses the Segmented LRU (SLRU) policy to capture frequency and 
> recency of the working set. It achieves concurrency by using an O( n ) 
> background thread to prioritize the entries and evict. Accessing an entry is 
> O(1) by a hash table lookup, recording its logical access time, and setting a 
> frequency flag. A write is performed in O(1) time by updating the hash table 
> and triggering an async eviction thread. This provides ideal concurrency and 
> minimizes the latencies by penalizing the thread instead of the caller. 
> However the policy does not age the frequencies and may not be resilient to 
> various workload patterns.
> W-TinyLFU ([research paper|http://arxiv.org/pdf/1512.00727.pdf]) records the 
> frequency in a counting sketch, ages periodically by halving the counters, 
> and orders entries by SLRU. An entry is discarded by comparing the frequency 
> of the new arrival (candidate) to the SLRU's victim, and keeping the one with 
> the highest frequency. This allows the operations to be performed in O(1) 
> time and, though the use of a compact sketch, a much larger history is 
> retained beyond the current working set. In a variety of real world traces 
> the policy had [near optimal hit 
> rates|https://github.com/ben-manes/caffeine/wiki/Efficiency].
> Concurrency is achieved by buffering and replaying the operations, similar to 
> a write-ahead log. A read is recorded into a striped ring buffer and writes 
> to a queue. The operations are applied in batches under a try-lock by an 
> asynchronous thread, thereby track the usage pattern without incurring high 
> latencies 
> ([benchmarks|https://github.com/ben-manes/caffeine/wiki/Benchmarks#server-class]).
> In YCSB benchmarks the results were inconclusive. For a large cache (99% hit 
> rates) the two caches have near identical throughput and latencies with 
> LruBlockCache narrowly winning. At medium and small caches, TinyLFU had a 
> 1-4% hit rate improvement and therefore lower latencies. The lack luster 
> result is because a synthetic Zipfian distribution is used, which SLRU 
> performs optimally. In a more varied, real-world workload we'd expect to see 
> improvements by being able to make smarter predictions.
> The provided patch implements BlockCache using the 
> [Caffeine|https://github.com/ben-manes/caffeine] caching library (see 
> HighScalability 
> [article|http://highscalability.com/blog/2016/1/25/design-of-a-modern-cache.html]).
> Edward Bortnikov and Eshcar Hillel have graciously provided guidance for 
> evaluating this patch ([github 
> branch|https://github.com/ben-manes/hbase/tree/tinylfu]).

This message was sent by Atlassian JIRA

Reply via email to